Installation and operating instructions

Intelligent paperless recorder

DS 500
I. Foreword

Dear customer,

thank you very much for deciding in favour of the DS 500. Please read this installation and operation manual carefully before mounting and initiating the device and follow our advice. A riskless operation and a correct functioning of the DS 500 are only guaranteed in case of careful observation of the described instructions and notes.

Sales Office South/Geschäftsstelle Süd
Zindelsteiner Str. 15
D-78052 VS-Tannheim
Tel.: +49 (0) 7705 978 99 0
Fax: +49 (0) 7705 978 99 20
Mail: info@cs-instruments.com
Web: http://www.cs-instruments.com

Sales Office North/Geschäftsstelle Nord
Am Oxer 28c
D-24955 Harrislee
Tel.: +49 (0) 461 700 20 25
Fax: +49 (0) 461 700 20 26
Mail: info@cs-instruments.com
Web: http://www.cs-instruments.com
Table of contents

I. Foreword

- Introduction to DS 500 2

II. Table of contents

- Safety instructions
 - General 7
 - Installation 8
- Application area 10
- Intended use 11
- Technical data DS 500 12
- Input signal 13
- Cable cross-section 13
- Package dimensions 14
- Assembly instructions 15
- Panel and wall mounting 16
- Connection diagrams DS 500
 - DS 500 with 4 channels 17
 - DS 500 with 8 channels 17
 - DS 500 with 12 channels 17
 - Power supply DS 500 standard version 100 - 240 VAC 18
 - X2.1 and X2.2 by standard version 100 - 240 VDC, wired ex works 18
 - Power supply by special version 24 VDC 19
 - Connection 4 x alarm relay, max. 230 VAC, 6 A 19
 - Connection bus systems X4.1 and S4.1 19
 - Connector pin assignment for all sensors XA.1 – XA.4, XB.1 – XB.4, XC.1 – XC.4 19
- Connection diagrams of the different sensor types
 - Connection CS dew point sensors, series FA 415/FA 300 20
 - Connection for dew point- and consumption sensors, series FA/VA 4xx 21
 - Connection for dew point- and consumption sensors, series FA/VA 5xx 22
 - Connection pulse sensors 23
 - Analogue two-, three-, and four-wire current signal 24
 - Three- and four-wire power supply 0 - 1/10/30 VDC 27
 - Two-, three-, and four-wire connector pin assignments for PT100/PT1000/KTY81 28
 - Connection with RS485 28
12 Connect the DS 500 with a PC

13 Operation DS 500

13.1 Main menu (Home)

13.1.1 Initialization

13.1.2 Main menu after initialization

13.2 Shutdown

13.3 Settings

13.3.1 Password settings

13.3.2 Sensor settings

13.3.2.1 Choice of the sensor type (For example type CS-Digital sensor)

13.3.2.2 Label and setting the description fields

13.3.2.3 Name the measurement data and define the decimal places

13.3.2.4 Recording measurement data

13.3.2.5 Alarm settings

13.3.3 Dew point sensor with type CS-Digital (SDI Bus)

13.3.4 Flow sensor VA 400 / VA 420 of type CS-Digital (SDI Bus)

13.3.4.1 More-Settings (scale analogue output)

13.3.4.5 Dew Point Sensor of type FA 5xx (RS 485 Modbus)

13.3.5.1 Settings Dew point sensor FA 500 FA 510

13.3.5.1.1 Unit selection for temperature and humidity

13.3.5.1.2 Definition of the System pressure (relative pressure value)

13.3.5.1.3 Definition of Reference pressure (absolute pressure value)

13.3.5.1.4 Calibration

13.3.5.1.5 More Settings Analogue output 4-20mA

13.3.6 Flow sensor of type VA 5xx (RS 485 Modbus)

13.3.6.1 Settings for Flow sensor VA 5xx

13.3.6.1.1 Diameter settings

13.3.6.1.2 Gas Constant settings

13.3.6.1.3 Definition of the reference conditions

13.3.6.1.4 Definition Unit of flow and velocity

13.3.6.1.5 Definition consumption counter value and consumption unit

13.3.6.2 Settings analogue output 4-20mA of VA 5xx

13.3.6.3 Settings Pulse / Alarm output of VA 5xx

13.3.6.4 Settings ZeroPoint or Low Flow Cut off for VA 5xx

13.3.7 Configuration of analogue sensors

13.3.7.1 Type 0 - 1/10/30 Volt and 0/4 - 20 mA

13.3.7.2 Type PT100x and KTY81

13.3.7.3 Type Pulse (Pulse ration)

13.3.7.4 Type No Sensor

13.3.8 Typ Modbus

13.3.8.1 Selection and activation of sensor type

13.3.8.2 Modbus settings

13.3.9 Option Modbus extended channels

13.3.9.1 Activation of the extended Modbus channels

13.3.9.2 Settings of the extended Modbus channels

13.3.9.3 Modbus Settings

13.3.10 Sensor Settings storing/importing (Custom Sensor)

13.3.10.1 Sensor Settings Storing

13.3.10.2 Sensor Settings import
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.4</td>
<td>Logger settings (data logger)</td>
<td>70</td>
</tr>
<tr>
<td>13.5</td>
<td>Device settings</td>
<td>74</td>
</tr>
<tr>
<td>13.5.1</td>
<td>Set language</td>
<td>74</td>
</tr>
<tr>
<td>13.5.2</td>
<td>Date & Time</td>
<td>74</td>
</tr>
<tr>
<td>13.5.3</td>
<td>Network settings</td>
<td>75</td>
</tr>
<tr>
<td>13.5.4</td>
<td>ModBus settings (Slave)</td>
<td>76</td>
</tr>
<tr>
<td>13.5.5</td>
<td>Relay Settings</td>
<td>76</td>
</tr>
<tr>
<td>13.5.6</td>
<td>SD-Card</td>
<td>77</td>
</tr>
<tr>
<td>13.5.7</td>
<td>Update System</td>
<td>78</td>
</tr>
<tr>
<td>13.5.7.1</td>
<td>Saving System settings</td>
<td>78</td>
</tr>
<tr>
<td>13.5.7.2</td>
<td>Update FW (Main and channel)</td>
<td>79</td>
</tr>
<tr>
<td>13.5.8</td>
<td>Factory Reset</td>
<td>80</td>
</tr>
<tr>
<td>13.6</td>
<td>Report settings (optional)</td>
<td>81</td>
</tr>
<tr>
<td>13.7</td>
<td>Virtual Channels (optional)</td>
<td>82</td>
</tr>
<tr>
<td>13.7.1</td>
<td>Option „Virtual Channels“ activation</td>
<td>82</td>
</tr>
<tr>
<td>13.7.2</td>
<td>Virtual Channels Settings</td>
<td>83</td>
</tr>
<tr>
<td>13.7.3</td>
<td>Selection of Sensor-type</td>
<td>83</td>
</tr>
<tr>
<td>13.7.4</td>
<td>Configuration of each single virtual value</td>
<td>85</td>
</tr>
<tr>
<td>13.7.4.1</td>
<td>Activation of a single virtual value</td>
<td>85</td>
</tr>
<tr>
<td>13.7.4.2</td>
<td>Definition of Operands</td>
<td>86</td>
</tr>
<tr>
<td>13.7.4.3</td>
<td>Definition of Operations</td>
<td>86</td>
</tr>
<tr>
<td>13.7.4.4</td>
<td>Definition of Unit</td>
<td>87</td>
</tr>
<tr>
<td>13.7.4.5</td>
<td>Value name, resolution of decimal places and recording of values</td>
<td>88</td>
</tr>
<tr>
<td>13.7.4.6</td>
<td>Calculation Example „Specific Performance“</td>
<td>89</td>
</tr>
<tr>
<td>13.8</td>
<td>Analog Total (optional)</td>
<td>91</td>
</tr>
<tr>
<td>13.8.1</td>
<td>Option „Analog Total“ activation</td>
<td>91</td>
</tr>
<tr>
<td>13.8.2</td>
<td>Selection of sensor type</td>
<td>92</td>
</tr>
<tr>
<td>13.9</td>
<td>Chart</td>
<td>93</td>
</tr>
<tr>
<td>13.10</td>
<td>Chart/Real time values</td>
<td>98</td>
</tr>
<tr>
<td>13.11</td>
<td>Channels</td>
<td>100</td>
</tr>
<tr>
<td>13.12</td>
<td>Real time values</td>
<td>101</td>
</tr>
<tr>
<td>13.13</td>
<td>Alarm overview</td>
<td>102</td>
</tr>
<tr>
<td>13.14</td>
<td>Further setting options</td>
<td>103</td>
</tr>
<tr>
<td>13.14.1</td>
<td>Set backlight</td>
<td>103</td>
</tr>
<tr>
<td>13.14.2</td>
<td>Calibrate touch-screen</td>
<td>104</td>
</tr>
<tr>
<td>13.14.3</td>
<td>Cleaning</td>
<td>104</td>
</tr>
<tr>
<td>13.14.4</td>
<td>System Status</td>
<td>104</td>
</tr>
<tr>
<td>13.14.5</td>
<td>About DS 500</td>
<td>105</td>
</tr>
<tr>
<td>13.15</td>
<td>Consumption report with cost settings, export data and webserver</td>
<td>106</td>
</tr>
<tr>
<td>13.15.1</td>
<td>Consumption report (optional)</td>
<td>106</td>
</tr>
<tr>
<td>13.15.2</td>
<td>Cost settings (optional)</td>
<td>108</td>
</tr>
<tr>
<td>13.16</td>
<td>Webserver (optional)</td>
<td>109</td>
</tr>
<tr>
<td>13.16.1</td>
<td>Option „Webserver“ activation</td>
<td>109</td>
</tr>
<tr>
<td>13.16.2</td>
<td>Setup the Webserver Admin Password</td>
<td>109</td>
</tr>
<tr>
<td>13.16.3</td>
<td>Webserver start</td>
<td>110</td>
</tr>
<tr>
<td>13.16.3.1</td>
<td>Webserver assignment of rights (Administrator)</td>
<td>111</td>
</tr>
<tr>
<td>13.16.3.1.1</td>
<td>Accessrights Webserver</td>
<td>111</td>
</tr>
<tr>
<td>13.16.3.1.2</td>
<td>Webserver Login</td>
<td>111</td>
</tr>
<tr>
<td>13.16.3.1.3</td>
<td>New users and password definition</td>
<td>112</td>
</tr>
<tr>
<td>13.16.3.2</td>
<td>Webserver E-Mail Configuration (Administrator)</td>
<td>113</td>
</tr>
<tr>
<td>13.16.3.3</td>
<td>Webserver MailOnAlarm (Administrator & Operator)</td>
<td>114</td>
</tr>
<tr>
<td>13.16.3.4</td>
<td>Webserver Chart (Administrator, Operator & User)</td>
<td>115</td>
</tr>
<tr>
<td>13.16.3.5</td>
<td>Webserver Screen</td>
<td>116</td>
</tr>
<tr>
<td>13.16.3.6</td>
<td>Webserver Actuals</td>
<td>117</td>
</tr>
<tr>
<td>13.16.3.7</td>
<td>Webserver Status</td>
<td>117</td>
</tr>
<tr>
<td>13.17</td>
<td>Import / Export</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>13.17.1</td>
<td>Export Logger data</td>
<td></td>
</tr>
<tr>
<td>13.17.2</td>
<td>Screenshots export</td>
<td></td>
</tr>
<tr>
<td>13.17.3</td>
<td>Export System Settings</td>
<td></td>
</tr>
<tr>
<td>13.17.4</td>
<td>Export Report</td>
<td></td>
</tr>
<tr>
<td>13.17.5</td>
<td>Import system settings</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14</th>
<th>Screenshot function</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>Screenshot saving</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th>Cleaning</th>
</tr>
</thead>
</table>

118 | 118 | 119 | 120 | 120 | 121 | 122 | 122 | 123
1 Safety instructions

1.1 General

Please check whether this manual corresponds with the device type.

Please attend to all notes indicated in this instruction manual. It contains essential information which has to be followed during installation, operation and maintenance. Therefore, this instruction manual has to be read categorically by the technician as well as by the responsible user/qualified personnel before installation, initiation and maintenance.

This instruction manual has to be available at any time at the operation site of the DS 500.

Regional and national regulations respectively, have to be observed in addition to this instruction manual if necessary.

In case of any obscurities or questions with regard to this manual or the instrument please contact CS Instruments GmbH.

Warning!
Inadmissible operating parameters!

Undercutting and exceeding respectively of limit values may cause danger to persons and material and may lead to functional and operational disturbances.

Measures:

• Make sure that the DS 500 is only operated within the admissible limit values indicated on the type label.
• Strict observance of the performance data of the DS 500 in connection with the application.
• Do not exceed the admissible storage and transportation temperature.

Further safety instructions:

• Attention should also be paid to the applicable national regulations and safety instructions during installation and operation.
• The DS 500 is not allowed to be used in explosive areas.

Additional remarks:

• Do not overheat the instrument!
• Change of battery or SD-Card are only allowed to be carried out by authorized qualified personnel and in strainless state!

Attention!
Malfunctions at the DS 500!

Faulty installation and insufficient maintenance may lead to malfunctions of the DS 500 which may affect the measuring results and which may lead to misinterpretations.
1.2 Installation

Warning!
Supply voltage!
Contact with supply voltage carrying non-insulated parts may cause an electric shock with injury and death.

Measures:
• Note all applicable regulations for electrical installations (e.g. VDE 0100)!
• Carry out maintenance only in strain less state!
• All electric works are only allowed to be carried out by authorized qualified personnel.

Danger!
Missing earth connection!
When the earth connection (protective earth) is missing, there is the risk in the event of malfunction, that contactable, conductive components may carry supply voltage. Touching of such parts leads to an electric shock with injuries and death.
It is imperative to connect the plant to earth or to connect the protective conductor according to the regulations.
Do not use plug adapters at the power plug.
Have the power plug replaced by qualified skilled persons, if required.
The plug of the power supply cord is used as a separator. This separator must be clearly recognizable and easily accessible by the user. A plug connector with a CEE7/7 system is necessary.

All the electrical lines carrying supply voltage or another voltage that is dangerous in the case of contact (power supply cord, alarm and indicator relays), must additionally be equipped with double or reinforced insulation (EN 61010-1). This can be ensured by using plastic-sheathed cables, a second insulation (e.g. flexible insulating tubing), or correspondingly suitable lines with reinforced insulation. The connecting cables can be equipped, for example, with flexible insulating tubing. The additional flexible insulating tubing must withstand the electrical and mechanical stresses which can occur during the intended use (see EN 61010-1, Clause 6.7.2.2.1).

DANGER!

Supply voltage!

When wiring the connecting lead, it must be ensured that the double or reinforced insulation between the electric circuits that are dangerous in the case of contact and the contactable secondary circuit remains maintained.

NOTE!

The additional insulation must be suitable for a test voltage of 1500 V alternating current.

The thickness of the insulation must be at least 0.016 inch.

E.g. flexible insulating tubing, type BIS 85 (Bierther GmbH).

The additional insulation of the connecting leads (mains connection, alarm and indicator relays) can be implemented as follows:

1. Terminals (connectors)
2. Flexible insulating tubing for the connecting leads
3. Connecting cable
2 Application area

Our long-term hands-on experience in measurement and control technology was implemented in the new DS 500.

From recording of the measured data, automatic sensor identification, indication on a big colour screen, alerting, storage up to remote read-out via web server, all that is possible with DS 500. By means of the CS-Soft, software alarms can be sent via SMS or e-mail.

On the big 7" colour screen with touch panel all information is available at a glance. The operation is very easy. All measured values, measured curves and threshold exceeding’s are indicated. The progression of the curve, since the beginning of the measurement, can be viewed by an easy slide of the finger.

Daily, weekly and monthly reports, with costs in € and counter reading in m³, for each consumption sensor are completing the sophisticated system concept.

The huge difference to ordinary paperless chart recorders reveals in the easy initiation as well as in the evaluation of the measured data. All sensors are identified directly and powered by DS 500. Everything is matched and tuned.

Versatile:
Up to 12 sensors, incl. all CS sensors (consumption, dew point, pressure, current, KTY, PT 100, PT 1000) are identified automatically by DS 500. Optional analogue sensors (0/4 - 20 mA, 0 - 1/10/30 V, pulse) can be configured easily and quickly. Digital sensors can be connected via RS 485, Modbus RTU and SDI.

Flexible:
Network-compatible and worldwide remote data transmission via Ethernet, integrated web server.

Alarm relay / fault indication:
Up to 32 threshold values can be configured freely and allocated to 4 different alarm relay. Collective alarms are possible.
3 Intended use

The DS 500 data logger serves for the stationary measured data acquisition and storage of analogue and digital input signals.

The DS 500 data logger is exclusively designed and constructed for the proper application purpose that is described herein and must only be used correspondingly.

A check in order to ascertain whether or not the device is suitable for the chosen employment must be carried out by the user. It must be ensured that the medium is compatible with the components which come into contact with it. The technical data listed in the data sheet are binding.

Improper handling or operation outside the technical specifications is impermissible. Claims of any kind on the basis of improper use are excluded.
4 Technical data DS 500

<table>
<thead>
<tr>
<th>Dimensions of housing</th>
<th>280 x 200 x 95 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connections</td>
<td>18 x PG 12 for sensors and supply, alarm relay</td>
</tr>
<tr>
<td></td>
<td>1 x RJ 45 Ethernet connection</td>
</tr>
<tr>
<td>Version panel mounting</td>
<td>Cutout panel 250 x 156 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>3.5 kg</td>
</tr>
<tr>
<td>Material</td>
<td>Die cast metal, front screen polyester</td>
</tr>
<tr>
<td>Protection level</td>
<td>IP65</td>
</tr>
</tbody>
</table>

Sensor inputs

| 4/8/12 sensor inputs for analogue and digital sensors freely allocatable. |
| Digital CS sensors for dew point and consumption with SDI interface FA/VA 400 Series. |
| Digital third-party sensors RS 485/Modbus RTU, other bus systems realizable on request. |
| Analogue CS sensors for pressure, temperature, clamp-on ammeters preconfigured. |
| Analogue third-party sensors 0/4 – 20 mA, 0 - 1/10/30 V, pulse, Pt100/Pt1000, KTY. |

Power supply for sensors

| Output voltage: 24 VDC ± 10% galvanically isolated |
| Output current: 130 mA by continuous operation, peak 180mA |
| Maximum output current over all channels with |
| - one power supply: 400mA |
| - two power supplies: 1Ampere |

Interfaces

| USB stick, USB cable, Ethernet/RS 485 Modbus RTU/TCP, SDI other bus systems on request, web server optionally |

Outputs

| Outputs 4 relay (max. switching voltage: 400 VAC / 300 VDC, Switching current: min. 10mA, max. 6A) alarm management, relay freely programmable, collective alarm. |
| Analogue output, pulse in case of sensors with own signal output looped, like e. g. VA/FA Series. |

Memory card

| Memory size 2 GB SD memory card standard, optionally up to 4 GB |

Power supply

| 100 - 240 VAC/50 - 60 Hz, 75VA , special version 24 VDC |

Battery ¹)

| CR 2032 |

Colour screen

| 7” touch panel TFT transmissive, graphics, curves, statistics |

Accuracy

| See sensor specifications |

Operating temperature

| 0 - 50 °C |

Storage temperature

| -20 - 70 °C |

Optionally

| Web server |

Optionally

| Quick measurement with 10 ms sampling rate for analogue sensors, Max/Min indication per second. |

Optionally

| Option "consumption report" statistics, daily/weekly/monthly report. |

¹) Lithium manganese dioxide Battery, Panasonic CR2032 / 3 V / 225 mAh
5 Input signal

<table>
<thead>
<tr>
<th>Input signal</th>
<th>Measuring range</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>Input resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current signal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0 – 20 mA / 4 – 20 mA) internal or external</td>
<td>0 – 20 mA / 4 – 20 mA</td>
<td>0,0001 mA</td>
<td>± 0,03 mA ± 0,05 %</td>
<td>50 Ω</td>
</tr>
<tr>
<td>power supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage signal</td>
<td></td>
<td>0,05 mV</td>
<td>± 0,2 mV ± 0,05 %</td>
<td>100 kΩ</td>
</tr>
<tr>
<td>(0 - 1V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage signal</td>
<td>0 - 10 V/30 V</td>
<td>0,5 mV</td>
<td>± 2 mV ± 0,05 %</td>
<td>1 MΩ</td>
</tr>
<tr>
<td>(0 - 10 V / 30 V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD Pt100</td>
<td>-200 - 850 °C</td>
<td>0,1 °C</td>
<td>± 0,2 °C at -100 - 400 °C ± 0,3 °C (further range)</td>
<td></td>
</tr>
<tr>
<td>RTD Pt1000</td>
<td>-200 - 850 °C</td>
<td>0,1 °C</td>
<td>± 0,2 °C at -100 - 400 °C ± 0,3 °C (further range)</td>
<td></td>
</tr>
<tr>
<td>Pulse</td>
<td>Minimum pulse length 100 μs frequency 0 - 1 kHz max. 30 VDC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6 Cable cross-section

6.1 Power supply 100 - 240 VAC, 50 - 60 Hz, special version 24 VDC:
Cable cross section power supply: 0,75 mm²

6.2 Sensor circuit points/Output signal:
AWG16 – AWG28, cable cross-sections: 0,14 - 1,5 mm²
Cable gland clamping Range: 4-8mm
7 Package dimensions

Dimensions of holes for wall mounting (D = 6 mm):
8 Assembly instructions

Assembly instructions

Montageanleitung
Assembly instructions
Instructions d’assemblage

Sie haben sich für aluCASE entschieden, das neue Gehäuse-Konzept nach dem mehrWERT-Prinzip. You have made a decision for aluCASE, the new enclosure concept according to the addedVALUE principle.

Vous êtes décidé en faveur d’aluCASE, le coffret conçu selon le nouveau principe de VALEURajoutée.

mehrWERT 1:

addedVALUE 1: Integrated recesses for membrane keyboards. Simply 18 keys per front panel into the existing recesses.

VALEURajoutée 1: Cavités pour le clavier et affleurement les claviers à affleurement au dessous, avant qu’ils ne soient simplement collés dans les cavités.

mehrWERT 2:
Bestückung bei geschlossenen Gehäuse. Correct mounting. Observe the assembly notes.

addedVALUE 2:
Endoresses can be installed after closing. Close lid and install endoresses before fitting the design covers.

VALEURajoutée 2: Fixer le coffret, ou dernier état formé. Former le couvercle et monter le coffret avant d’engager les caches "designer".

mehrWERT 3:

addedVALUE 3:
Plastic design covers for design appearance. Once the enclosure has (must be) closed, engage covers (see request, covers may be supplied in a separate container).

VALEURajoutée 3: Caches "designer" en plastique pour une présentation optique parfaitement. Une fois le coffret fermé, engager les caches "designer". (Les caches peuvent être fournis en aluminium préalable à leur demande.)

mehrWERT 4:
Außenscharniere ohne sichtbare Schrauben. Exterieur hinges without visible screws. The exterior hinges for the enclosure side of the enclosure can be assembled at the factory.

addedVALUE 4:
Exterior hinges without visible screws. The exterior hinges for the enclosure side of the enclosure can be assembled at the factory.

VALEURajoutée 4: Charnières extérieures avec vis cachées. Les charnières pour le haut et les côtés du coffret peuvent être montées en usine.

mehrWERT 5:
Zugänglich durch Stabverschlüsse. Access is safeguarded by means of insert locks. The securing cover can be secured at the factory by means of insert locks combined with the hinges.

addedVALUE 5:
Access is safeguarded by means of insert locks. The securing cover can be secured at the factory by means of insert locks combined with the hinges.

VALEURajoutée 5: Accès protégé en moyenne de serrures à douille. L’accès peut être protégé en usine au moyen de serrures à douille combinées aux charnières.

mehrWERT 6:

addedVALUE 6:
Integrated lid supports. Lid supports are part of the delivery. Just insert them in the existing recesses on the required side.

VALEURajoutée 6: Supports de couvercle fournis avec le coffret. Engager les deux dans les récesses prévues à cet effet du côté désiré.
9 Panel and wall mounting

Cut-out panel

Dimension of housing 270 x 170 x 90 mm
Dimension of holes for wall mounting D = 6 mm
10 Connection diagrams DS 500

10.1 DS 500 with 4 channels

X1.1: power supply

X2.1, X2.2: for internal use

X3.1 - X3.4: alarm relay 1 – 4

X4.1, S4.1: for CAN, RS485, R120 configuration

XA.1 - XA.4: sensor channels 1 – 4

10.2 DS 500 with 8 channels

X1.1: power supply

X2.1, X2.2: for internal use

X3.1 - X3.4: alarm relay 1 – 4

X4.1: for CAN, RS485, R120 configuration

XA.1 - XA.4: sensor channels 1 – 4

XB.1 - XB.4: sensor channels 5 – 8
10.3 DS 500 with 12 channels

X1.1:
- Power supply

X2.1, X2.2:
- For internal use

X3.1 - X3.4:
- Alarm relay 1 – 4

X4.1:
- For CAN, RS485, R120 configuration

XA.1 - XA.4:
- Sensor channels 1 – 4

XB.1 - XB.4:
- Sensor channels 5 – 8

XC.1 - XC.4:
- Sensor channels 9 – 12

10.4 Power supply DS 500 standard version 100 - 240 VAC

X1.1

<table>
<thead>
<tr>
<th>L1</th>
<th>N</th>
<th>PE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

100 - 240 VAC, 50 - 60 Hz

10.5 X2.1 and X2.2 by standard version 100 - 240 VDC, wired ex works

X2.1, X2.2

<table>
<thead>
<tr>
<th>L1'</th>
<th>N'</th>
<th>PE'</th>
<th>GND</th>
<th>U+ (24 VDC)</th>
</tr>
</thead>
</table>

Only for internal use
10.6 Power supply by special version 24 VDC

| X2.1 | External supply 24 VDC (X 2. 2 not occupied)
| | Internal power supplies 100 - 240 VAC/24 VDC are not assembled.
| | The supply voltage 24 VDC connect directly into pin 4 and 5.
| | **GND**
| | **U+ (24 VDC)**
| | **X2.1**

10.7 Connection 4 x alarm relay, max. 230 VAC, 6 A

| X3.1 – X3.4 | NC
| | COM
| | NO
| | **X3.1**: alarm relay 1
| | **X3.2**: alarm relay 2
| | **X3.3**: alarm relay 3
| | **X3.4**: alarm relay 4
| | NC and COM are closed by: alarm, voltage breakdown, sensor break

10.8 Connection bus systems X4.1 and S4.1

| X4.1 | A (+)
| | B (-)
| | **GND**
| | **Y**
| | **Z**
| | **X4.1**
| | **S4.1**
| | **RS485 Modbus**
| | **TERMINATING 120Ω**
| | **S2, S3, S7 ON**
| | **S1, S8 ON**
| | **DS 500 version with 4 channels**

10.9 Connector pin assignment for all sensors XA.1 – XA.4, XB.1 – XB.4, XC.1 – XC.4

| XA.1 – XA.4
| XB.1 – XB.4
| XC.1 – XC.4
| **+ RS485**
| **- RS485**
| **SDI**
| **Analog IN+**
| **Analog IN-**
| **I (500 µA)**
| **+VB 24Vdc**
| **-VB GND**
| **Ext. Anzeige**
| **RS485-A (+)**
| **RS485-B (-)**
| **SDI**
| **ANALOGUE IN +** (current signal and voltage signal)
| **ANALOGUE IN –** (current signal and voltage signal)
| **CURRENT SOURCE 500 µA**
| **+VB, 24V DC sensor power supply**
| **- VB-, GND sensor**
| **- Support Pin for ext. use e.g. PLC/ZLT or Display**

DS 500 V1.55
Side 19 of 124
11 Connection diagrams of the different sensor types

By/With consumption sensors and dew point sensors from CS Instruments there is the possibility to provide values as analogue current signal 4 – 20 mA for further working process. The measurement/reading of the current signal for an external PLC/ZLT or external third-party display is explained in the connection diagrams.

BY using of the CS Instruments connection cables 0553.0104 or 0553.0105 please follow pining:

<table>
<thead>
<tr>
<th>Connector VA / FA 4xx</th>
<th>Pin 1</th>
<th>Pin 2</th>
<th>Pin 3</th>
<th>Pin 4</th>
<th>Pin 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDI</td>
<td>- VB</td>
<td>+ VB</td>
<td>+I 4…20mA</td>
<td>NC</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connector VA / FA 5xx</th>
<th>Pin 1</th>
<th>Pin 2</th>
<th>Pin 3</th>
<th>Pin 4</th>
<th>Pin 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modbus A</td>
<td>+ VB</td>
<td>- VB</td>
<td>Modbus B</td>
<td>+I 4…20mA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connection cable</th>
<th>Pin 1</th>
<th>Pin 2</th>
<th>Pin 3</th>
<th>Pin 4</th>
<th>Pin 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0553.0104 (5m)</td>
<td>brown</td>
<td>white</td>
<td>blue</td>
<td>black</td>
<td>grey</td>
</tr>
<tr>
<td>0553.0105 (10m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following connection diagrams in Chapter 10 apply to XA.1 to XC.4!

FA serial: dew point sensors from CS Instruments
VA serial: consumption sensors from CS Instruments

11.1 Connection CS dew point sensors, series FA 415/FA 300

The digital data transmission between DS 500 and the dew point sensors FA 415 and FA 300 occur via the SDI bus line.

DS 500 with ext. 4 -20mA routing

It’s possible to connect the FA 300/FA 425 alternatively as 4 – 20 mA analogue sensor in 2-wire technology.

To route the current signal of 4 - 20 mA to an external display, PLC or ZLT, please remove the bridge from Pin 4 (Analog IN) to support Pin 9 (ext. display) and then connect the external display according schematic.
11.2 Connection for dew point- and consumption sensors, series FA/VA 4xx

The digital data transmission between DS 500 and the sensors FA 400/410 and VA 400/420 occurs via the SDI bus line.

To route the current signal of 4 - 20 mA to an external display, PLC or ZLT, please remove the bridge from Pin 4 (Analog IN) to support Pin 9 (ext. display) and then connect the external display according schematic.
11.3 Connection for dew point- and consumption sensors, series FA/VA 5xx

DS500

FA 510
FA 500
VA 500
VA 520

The digital data transmission between DS 500 and the sensors FA 500/ FA 510 and VA 500/520 occurs via RS 485 (Modbus).

DS500 with ext. 4 - 20mA routing

To route the current signal of 4 - 20 mA to an external display, PLC or ZLT, please remove the bridge from Pin 4 (Analog IN) to support Pin 9 (ext. display) and then connect the external display according schematic.
11.3 Connection pulse sensors

signal level 0: low = 0 – 0.7 VDC

signal level 1: high = 2.5 – 30 VDC

t = 400 µs

max. frequency (duty cycle 1:1) = 1000 Hz

input resistance: min. 100 kilo ohm

Attention:
The DS 500 is counting a consumption unit, by switching „power on“. It won’t work!
11.4 Analogue two-, three-, and four-wire current signal

<table>
<thead>
<tr>
<th>Sensors with 4 - 20 mA output in 2-wire technology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DS500 with ext. 4-20mA routing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Connection diagrams of the different sensor types

Sensors with 4 - 20 mA output in 3-wire technology

DS500

To route the current signal of 4 - 20 mA to an external display, PLC, ZLT etc. please use support Pin 9.
Connection diagrams of the different sensor types

Sensors with 4 - 20 mA output in 4-wire technology

DS500

![Connection diagram for DS500]

DS500 with ext. 4 - 20mA routing

To route the current signal of 4 - 20 mA to an external display, PLC, ZLT etc. please use support Pin 9.

![Connection diagram for DS500 with ext. 4 - 20mA routing]
11.5 Three- and four-wire power supply 0 - 1/10/30 VDC

Connection diagrams of the different sensor types

<table>
<thead>
<tr>
<th>Connection Diagram</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sensor with voltage output in 3-wire technology</td>
</tr>
<tr>
<td></td>
<td>Sensor with voltage output in 4-wire technology</td>
</tr>
</tbody>
</table>
11.6 Two-, three-, and four-wire connector pin assignments for PT100/PT1000/KTY81

- **2-wire PT100/PT1000/KTY81**

- **3-wire PT100/PT1000/KTY81**

- **4-wire PT100/1000/KTY81**

11.7 Connection with RS485

Sensor with RS485 interface
12 Connect the DS 500 with a PC

Important:
The IP addresses of PC and DS 500 must be statically assigned (DHCP off) and have to be in the same network.
If the IP-address of the DS 500 has changed, you have to reboot!

Remark:
IP-address of the DS 500: See chapter, 13.5.3 Network settings
Reboot the DS 500: See chapter, 13.5.8 Factory Reset

The DS 500 can be connected with the PC by a crossover cable, which has a RJ45 plug on each side, or an Ethernet cable with a crossover adapter.

After connecting the DS 500 via a suitable cable to the PC, you can make graphical and tabular data evaluations with the CS Soft Basic software.

Windows PC’s, network settings:

Windows 7:
Start ➔ Control Panel ➔ Network and Sharing Center ➔ adapter ➔ Networking ➔ Properties ➔ Internet Protocol Version 4 (TCP/IPv4) ➔ Use the Following IP address ➔ enter IP address and Subnet mask
After this: OK ➔ OK ➔ Close

Windows Vista:
Start ➔ Control Panel ➔ Network connection ➔ Networking ➔ Properties ➔ Internet Protocol Version 4 (TCP/IPv4) ➔ Use the Following IP address ➔ enter IP address and Subnet mask
After this: OK ➔ OK ➔ Close

Windows XP:
Start ➔ Properties ➔ Control Panel ➔ Network connection ➔ Networking ➔ Properties ➔ Internet Protocol Version 4 (TCP/IPv4) ➔ Use the Following IP address ➔ enter IP address and Subnet mask
After this: OK ➔ OK ➔ Close
13 Operation DS 500

The operation is largely self-explanatory and menu-driven via the touch panel. The selection of the respective menu items occur via short “tapping” with the finger or a soft round pen.

Attention: Please use no pens or other objects with sharp edges! The foil can be damaged!

After sensors are connected, they also have to be configured.

Inputs or changes can be made with all white deposit fields. The measured values can be represented as a curve or values.

Words in green font refer mainly to the pictures in the section of the chapter, but also on important menu paths or menu items that are related to are in green font.

The menu navigation is generally in a green font!

The table of contents and chapter references in blue font contain links to the respective chapter title.

13.1 Main menu (Home)

From the main menu, you can reach every available item.

13.1.1 Initialization

After switching on the DS 500 all channels are initialized and the main menu will appear.

Attention: For the first initiation, there may be no channels preset!

Please see chapter **13.3.2 Sensor settings**, then select appropriate configurations and set!
13.1.2 Main menu after initialization

Important:
Before the first sensor setting is made, the language and time should be set!

Remark:
Chapter 13.5.1 Set language
(Main menu ➔ Settings ➔ Device Settings ➔ Set Language)

Chapter 13.5.2 Date & Time
(Main menu ➔ Settings ➔ Device Settings ➔ Date & Time)

13.2 Shutdown

Important:
In case the DS500 has to be set into a strainless state, it needs a defined termination / storage of the recorded data by a proper shutdown

Main menu ➔ Shutdown

This process must always be confirmed by entering the password.
13.3 Settings

The settings are all protected by a password!
Settings or changes are generally confirmed with OK!

Remark:
If you go back to main menu and then again one of the setting menus is called, you must enter the password again.

Main menu ➔ Settings

The optional Report settings and the appendant Cost settings, you will find in chapter 13.6 Report settings (optional) and 13.15.2 Cost Settings (optional). The out of it resultant summary table, you can see in the Consumption report in chapter 13.15.1 Consumption report (optional).

13.3.1 Password settings

Main menu ➔ Settings ➔ Password settings

Factory settings for password at the time of delivery: 0000 (4 times zero).

If required, the password can be changed in the Password settings.

The new password must be entered two times in a row and in each case confirmed with OK.

If an incorrect password is entered, there appears Enter password or New password repeat in red font.

If you cannot remember the password, please use Master password in order to enter a new password.

Remark:
The master password is supplied together with the instrument’s documentation.
13.3.2 Sensor settings

Important:
Sensors from CS Instruments are generally pre-configured and can be connected directly to a free sensor channel!

Main menu ➔ Settings ➔ Sensor settings

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Back

An overview of the available channels appears after entering the password. Depending on the version, 4, 8 or 12 channels.

Remark:
Usually no channels preset!

Remark:
Depending on the DS 500:
- No extension board ➔ 4 channels/setups
- One extension board ➔ 8 channels/setups
- Two extension boards ➔ 12 channels/setups

13.3.2.1 Choice of the sensor type (For example type CS-Digital sensor)

Main menu ➔ Settings ➔ Sensor settings ➔ A1

If still no sensor has been configured, the **Type No Sensor** appears.

By pushing the description field **Type No Sensor** the list of sensor types appears (see next step).
Choice of the sensor type (e.g. type CS-Digital sensor)

Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ Type description field ➔ CS-Digital

Now the *Type CS-Digital* is selected for the VA/FA 400 series.

Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ diameter description field

Important:

The *inner diameter* of flow tube can be entered here, if this was not automatically correctly set.

Important:

The *inner diameter* should be entered as precisely as possible, because otherwise the measurement results are not correct!

There is no uniform standard for the tube *inner diameter*!

(Please, inquire at the manufacturer or measure by your own !)
Choice of the sensor type (e.g. type CS-Digital sensor)

Main menu ➔ Settings ➔ Sensor settings ➔ A1

Now you can enter a Name and the counter status of the old sensor, if the sensor was changed.

This completes the configuration of the sensor.

After label and confirm with OK.

Remark:
After confirm with OK, the font is black again and the values and settings are accepted.

Attention:
Reference temperature and reference pressure (factory setting 20 °C, 1000 hPa):
All volume flow values (m³/h) and consumption values indicated in the display are related to 20 °C, 1000 hPa (according to ISO 1217 intake condition)
0 °C and 1013 hPa (= standard cubic meter) can also be entered as a reference.
Do not enter the operation pressure or the operation temperature under reference conditions!
13.3.2.2 Label and setting the description fields

Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ Text filed Name

In the case of text description field, a menu opens with the corresponding selection

a.) For name fields, a keyboard as you can see left side.
b.) For value fields a keypad as you can see left
c.) In case of a selection field a corresponding menu with possible entries will be displayed. See therefore chapter Sensor settings.

For the sensor name it is possible to enter a name with up to 24 characters. For values names are max. 10 characters and for the short name max. 3 characters possible.

13.3.2.3 Name the measurement data and define the decimal places

Remark:
The Resolution of the decimal places, the Short Name and Value Name are found under the Tool button!

Tool button:

Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ Tool Button

For the recorded Value there can be entered a Name with 10 characters and later in menu item Graphics/Real time values it is easier to identify it. Otherwise the Name is, for example, A1a.
The channel name is A1 and a is the first measurement data at the channel, the Second b and the Third c.
The Resolution of the decimal places is simply adjustable by pushing right and left (0 to 5 decimal places).

See also chapter 13.3.2.2 Label and setting the description fields

Important:

In the menu items Main ➔ Settings ➔ Sensor settings and Main ➔ Real time values, the Value Name displayed only by the DS 500 standard version with 4 channels!
The Short Name is used only in these two menu items, by the DS 500 versions with one or two extension boards (8 or 12 channels).
13.3.2.4 Recording measurement data

Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ Record Button

- Use the Record buttons to select the measurement data that will be stored by activated data logger.

Attention:

Before the selected measurement data are recorded, the data logger must be activated after the settings (See chapter 12.4 Logger settings (data logger)).
13.3.2.5 Alarm settings

Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ Alarm Button

By pushing an alarm button, the following window appears:

In the alarm settings, an Alarm 1 and Alarm 2 incl. Hysteresis can be entered for each channel.

In the menu Alarm overview (can be reached from the main menu), the alarm settings are clearly represented.

Remark: It can be set one of any relay as Alarm 1 or Alarm 2 thirty-two times.

E.g. set the Alarm 1 to relay 2 and relay 4 and the Alarm 2 to relay 1 and relay 3.

It is possible to select from 5 different delays.

T0 is preset to no delay.

The delays (T1 to T4) are free definable but are common valid for all relays.
Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ Alarm-Button ➔ Setup Delay

The delays (T1 to T4) are free definable but are common valid for all relays.

Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ Alarm-Button ➔ description field Delay T1

By changing the text field values the new delay time could be defined. Here for Delay T1.

Delay T0 is preset and cannot be changed and it is an immediate alarm.

Confirmation by pressing the OK button.

Same procedure for the remaining delay times T2-T4 is to apply.

Main menu ➔ Settings ➔ Sensor settings ➔ A1

After the alarm activation at channel A1.

The settings finished by pushing the OK button!
13.3.3 Dew point sensor with type CS-Digital (SDI Bus)

First step: choose an unused sensor channel
Main menu ➔ Settings ➔ Sensor settings ➔ B1

Second step: choose type CS-Digital
Main menu ➔ Settings ➔ Sensor settings ➔ B1 ➔ Type description field ➔ CS-Digital

Now the Type CS-Digital is selected for the VA/FA 400 series and confirmed by pressing the OK button.

The DS 500 detects, if the connected sensor is a flow or dew point sensor of CS Instruments and set the CS-Digital subtype automatically correct.

Now, a Name (See chapter 13.3.2.3 Label and setting the description fields), the alarm settings (See chapter 13.3.2.5 Alarm settings) and recording settings (See chapter 13.3.2.4 Recording measurement data), and the Resolution of the decimal places (See chapter 13.3.2.3 Name measurement data and define the decimal places) can be determined.

Third step: confirm with OK two times

It is possible to enter a name with 24 characters.
13.3.4 Flow sensor VA 400 / VA 420 of type CS-Digital (SDI Bus)

First step: choose an unused sensor channel
Main menu ➔ Settings ➔ Sensor settings ➔ B1

Second step: choose type CS-Digital
Main menu ➔ Settings ➔ Sensor settings ➔ B1 ➔ Type description field ➔ CS-Digital

Now the **Type CS-Digital** is selected for the VA/FA 400 series and confirmed by pressing the **OK** button.

The DS 500 detects, if the connected sensor is a flow or dew point sensor of **CS Instruments** and set the **CS-Digital** subtype automatically correct.

Now, a **Name** (See chapter 13.3.2.3 Label and setting the description fields), the **alarm settings** (See chapter 13.3.2.5 Alarm settings) and recording settings (See chapter 13.3.2.4 Recording measurement data), and the **Resolution** of the decimal places (See chapter 13.3.2.3 Name measurement data and define the decimal places) can be determined.

It is possible to enter a name with 24 characters.

Third step: confirm with **OK** two times
13.3.4.1 More-Settings (scale analogue output)

Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ More-Settings

In More-Settings, you can define whether the 4 - 20 mA analogue output of the sensor based on the flow rate or velocity.

The green highlighted description field is selected!

In addition, you can push the scale manual button and set the measuring range.

After confirming with OK, the settings are assumed.

Remark: More-Settings only for type **CS-Digital** available!

By pressing the OK button the settings are ready!
Main menu ➔ Settings ➔ Sensor settings ➔ A1

If the data logger is activated, the following window will appear and via pushing Yes it can be disabled.

(Only activated, if already settings and recordings are made)

Remark:
If sensor settings are defined or changed, the data logger must be stopped.

Changes or entries can be made by pressing the highlighted white fields.

Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ description field of numerical value

Important:

The *inner diameter* of flow tube can be entered here, if this was not automatically correctly set.

Inner diameter is entered here for example 27.5 mm.

Important:

The *inner diameter* should be entered as precisely as possible, because otherwise the measurement results are not correct!

There is no uniform standard for the tube *inner diameter*!
(Please, inquire at the manufacturer or measure by your own!)
Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ Gas Constant description field

A preset selection of suitable *Gas Constants*.

In the same way as here in chapter 13.3.2.2 Label and set the description fields described, the remaining description fields can be labelled.

Main menu ➔ Settings ➔ Sensor settings ➔ A1

See also chapter 13.3.2.1 Choice of the sensor types (For example type CS-Digital sensor)

Remark:
After confirming with *OK*, the font is black again and the values and settings are accepted.

Attention:
Reference temperature and reference pressure (factory setting 20 °C, 1000 hPa):
All volume flow values (m³/h) and consumption values indicated in the display are related to 20 °C, 1000 hPa (according to ISO 1217 intake condition)
0 °C and 1013 hPa (= standard cubic meter) can also be entered as a reference.
Do not enter the operation pressure or the operation temperature under reference conditions!
13.3.5 Dew Point Sensor of type FA 5xx (RS 485 Modbus)

First step: choose an unused sensor digital channel
Main menu ➔ Settings ➔ Sensor settings ➔ A1

Second step: choose type FA 5xx (inserted Digitalboard for A1/A2)
Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ Type description field ➔ FA 5xx

Now, a Name (See chapter 13.3.2.3 Label and setting the description fields), the alarm settings (See chapter 13.3.2.5 Alarm settings) and recording settings (See chapter 13.3.2.4 Recording measurement data), and the Resolution of the decimal places (See chapter 13.3.2.3 Name measurement data and define the decimal places) can be determined.

Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ Name description field

For input of a name, please enter the text field „Name“.

It is possible to set a name with max. 24 characters.

Confirmation by pressing the OK-button.
13.3.5.1 Settings Dew point sensor FA 500 FA 510

13.3.5.1.1 Unit selection for temperature and humidity

Main menu ➔ Settings ➔ Sensor settings ➔ A1

Unit selection for temperature and humidity by pressing the button °C, °F, g/m³ or mg/m³. Confirm the settings by pressing the OK button.

13.3.5.1.2 Definition of the System pressure (relative pressure value)

Actual there are 2 possibilities to define system pressure (input as relative pressure value)

- System pressure as a fixed value
- System pressure taken over from an external pressure sensor

Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ Pressure Setting ➔ Fixed

The definition of the fixed value system pressure value is done by activating the button "fixed", but this is only required in case a ext. pressure probe is connected. The value is entered in the corresponding text field. The unit can be freely selected, selection menu is opened by pressing the corresponding unit-button.

Confirm the settings by pressing the OK button.
Settings Dew point sensor type FA 5xx

By using an ext. pressure sensor, which is detected automatically e.g. here at input B1, the button Sensor has to be activated.

With activation of the text field „Sys Pressure“ the corresponding channel with the required measuring value could be selected.

Only values with pressure units can be selected.

Confirm the settings by pressing the OK button.

13.3.5.1.3 Definition of Reference pressure (absolute pressure value)

Reference pressure is the pressure for that the dew point in relaxation will be back-calculated.

Default Value is 1013 mbar (Atm. Pressure).

Confirm the settings by pressing the OK button.
Settings Dew point sensor type FA 5xx

13.3.5.1.4 Calibration

Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ Calibration

Here, a one-point calibration can be performed.

For that purpose, please enter in the text box “Reference Value” the new correct dew point value.

Then by pressing the “Calibration” button taking over the inserted reference value.

Calibration can be put back to factory setting by pressing „Reset“.

For each performed calibration, the counter is increased by 1.

13.3.5.1.5 More Settings Analogue output 4-20mA

Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ More-Settings ➔ 4-20mA

This menu allows the adjustment / assignment of the measurement value and the scaling of the analogue output.

Selection of the measurement value by selecting the appropriate measured value key in this example, “DP ° C” for dew point ° Ctd.

In text fields “4mA” and “20mA” the appropriate scaling values are entered, here from -80 ° Ctd (4mA) to -20 ° Ctd (20mA).

With “Error Val” is determined what is output in case of error at the analog output.

- <3.6 Sensor error / System error
- 22 Sensor error / System error
- 4..20 Output according Namur (3.8mA – 20.5 mA)
 < 4mA to 3.8 mA Measuring range under range
 >20mA to 20.5 mA Measuring range exceeding

Confirm the settings by pressing the OK button.
13.3.6 Flow sensor of type VA 5xx (RS 485 Modbus)

First step: choose an unused sensor digital channel
Main menu ➔ Settings ➔ Sensor settings ➔ A1

Second step: choose type VA 5xx
Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ Type description field ➔ VA 5xx

Now the *Type VA 5xx* is selected for the VA 5xx series and confirmed by pressing the **OK** button.

Now, a **Name** (See chapter 13.3.2.3 Label and setting the description fields), the **alarm settings** (See chapter 13.3.2.5 Alarm settings) and **recording settings** (See chapter 13.3.2.4 Recording measurement data), and the **Resolution** of the decimal places (See chapter 13.3.2.3 Name measurement data and define the decimal places) can be determined.

Input of a name, please enter the text field „Name“.

It is possible to enter a name with max. 24 characters.

Confirmation by pressing the **OK**-button.
13.3.6.1 Settings for Flow sensor VA 5xx

Main menu ➔ Settings ➔ Sensor settings ➔ A1

For each text field could be the either a value or a unit be set.

Settings by entering the text field and then input a value or select the unit for the appropriate field.

In case of VA 520 and VA 570 with integrated measuring section the diameter and diameter unit field are not access able.

Please confirm all changes /inputs by pressing the OK button

13.3.6.1.1 Diameter settings

Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ diameter description field

Important:
The inner diameter of flow tube can be entered here, if this was not automatically correctly set.

In

Please confirm by pressing the OK button.

Important:
The inner diameter should be entered as precisely as possible, because otherwise the measurement results are not correct!

There is no uniform standard for the tube inner diameter!
(Please, inquire at the manufacturer or measure by your own!)

Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ diameter unit description field
13.3.6.1.2 Gas Constant settings

Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ Gas Constant description field

<table>
<thead>
<tr>
<th>Gas</th>
<th>Gas Constant (m³/h)</th>
<th>Gas Constant (m³/h)</th>
<th>Gas Constant (m³/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>(real)</td>
<td>CO2 (real)</td>
<td>N2 (real)</td>
</tr>
<tr>
<td>Air</td>
<td>(real)</td>
<td>CO2 (real)</td>
<td>N2 (real)</td>
</tr>
<tr>
<td>CO2</td>
<td>(186.9)</td>
<td>N2O (187.8)</td>
<td>O2 (293.9)</td>
</tr>
<tr>
<td>N2</td>
<td>(448.5)</td>
<td>Ar (299.8)</td>
<td></td>
</tr>
</tbody>
</table>

[Image of gas constant settings interface]

Attention:

Reference temperature and reference pressure (factory setting 20 °C, 1000 hPa): All volume flow values (m³/h) and consumption values indicated in the display are related to 20 °C, 1000 hPa (according to ISO 1217 intake condition).

0 °C and 1013 hPa (= standard cubic meter) can also be entered as a reference. Do not enter the operation pressure or the operation temperature under reference conditions!

All gases marked in blue and with (real) have been a real gas calibration curve stored in the sensor.

Select the gas you require and confirm selection by pressing **OK** button.
13.3.6.1.3 Definition of the reference conditions

Here, the desired measured media reference conditions for pressure and temperature can be defined.

- **Main menu** ➔ **Settings** ➔ **Sensor settings** ➔ **A1** ➔ **Ref. Pressure description field**
- **Main menu** ➔ **Settings** ➔ **Sensor settings** ➔ **A1** ➔ **Ref. Pressure Unit description field**

![Image of Ref. Pressure setting with options for mbar, psi, hpa]

- **Main menu** ➔ **Settings** ➔ **Sensor settings** ➔ **A1** ➔ **Ref. Temp. description Field**
- **Main menu** ➔ **Settings** ➔ **Sensor settings** ➔ **A1** ➔ **Ref. Temp. Unit description Field**

![Image of Ref. Temp. setting with options for °C, °F]

13.3.6.1.4 Definition Unit of flow and velocity

- **Main menu** ➔ **Settings** ➔ **Sensor settings** ➔ **A1** ➔ **Flow description Field**
- **Main menu** ➔ **Settings** ➔ **Sensor settings** ➔ **A1** ➔ **Velocity description Field**

![Image of Flow and Velocity settings with units like m³/h, m³/min, Nm, FL, Nlt/h, cfm, Ncfm, kW]

DS 500 V1.55
13.3.6.1.5 *Definition consumption counter value and consumption unit*

Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ Count Val. description Field
Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ Count Val. Unit description Field

The sensor allows taking over a starting counter value. Inserting the value by entering the “Count. Val.” text field.

In the Count. Val. Unit field different units could be used. Selection by activation of the “Count. Val. Unit” text field.

In case the counter value unit will be changed only the consumption counter value will be recalculated to the appropriate unit.

Selection to confirm selection by pressing *OK* button.

Important!
When the counter reach 100000000 m³ the counter will be reset to zero.

Remark:
After confirmation with *OK*, the font is black again and the values and settings are accepted.
13.3.6.2 Settings analogue output 4-20mA of VA 5xx

Main menu ➔ Settings ➔ Sensor settings ➔ More-Settings ➔ 4-20mA Ch1

This menu allows the adjustment / assignment of the measurement value and the scaling of the analogue output by pressing the "4-20mA Ch1" button.

Selection of the analogue output measurement value by activating the appropriate measured value key in this example, "Flow". Possible outputs are flow, velocity and temperature. In case of no use, please select "Off".

The analogue output scaling have to possibilities, automatic scaling (default) and a manual scaling by the user. Auto scaling is based on the calibration settings, means 4mA is set to zero and the 20mA value is based on the max. settings here 900 m³/h

A "manual scaling" needs an activation of the “scale manual” button. In text fields "4mA" and "20mA" the appropriate scaling values are entered, here from zero m³/h (4mA) to 300 m³/h (20mA).

With "Error Val" it is determined what is the output in case of an error at the analogue output.
- 2 mA Sensor error / System error
- 22 mA Sensor error / System error
- 4..20 Output according Namur (3.8mA – 20.5 mA)
 - < 4mA to 3.8 mA Measuring range under range
 - >20mA to 20.5 mA Measuring range exceeding

Inputs / changes to be confirmed with “OK” button. Return to main menu with “Back”.
The pulse output of the VA 5xx could be set functionally as pulse output or alarm output.

Function to activate by pressing either the “Pulse” or “Alarm” button.

In case of no use, please select “none”.

Inputs / changes to be confirmed with “OK” button. Return to main menu with “Back”.

To set up the pulse first the unit and the measurement value have to be defined.

Unit selection by pressing “unit” button and choice one of the possible units “kg”, “cf”, “ltr” or “m³”).

Pulse weight setting by entering the text field “Value”. Here with defined 1 pulse per m³ and with positive polarity.

With „Polarity“ the switching state could be defined.

Pos. = 0 → 1 neg. 1 → 0

closed | pos | neg

open

Inputs / changes to be confirmed with “OK” button. Return to main menu with “Back”.

In case of use the pulse output as alarm following definitions needs to be set:

Unit selection by pressing “unit” button and choice one of the possible units “cfm”, “ltr/s”, “m³/h”, “m/s”, “°F”, “°C”, “kg/s” or “kg/min”).

Alarm value setting by entering the text fields “Value”.

The limits „High“ or „Low“ defines when the alarm is activated, selecting by pressing the appropriate button

High: Value over limit
Low: Value under limit

Inputs / changes to be confirmed with “OK” button. Return to main menu with “Back”.
13.3.6.4 Settings ZeroPoint or Low Flow Cut off for VA 5xx

Main menu ➔ Settings ➔ Sensor settings ➔ More-Settings ➔ ZeroPoint

With these function following adjustments for the sensor VA 5xx could be done:

ZeroPoint:
When, without flow, the installed sensor shows already a flow value of > 0 m³/h herewith the zero point of the characteristic could be reset

Cutoff:
With the low-flow cut off activated, the flow below the defined “LowFlow Cut off” value will be displayed as 0 m³/h and not added to the consumption counter.

For Zero Point the text field “ZeroPoint” to enter and insert the displayed actual flow, here 2.045

For inserting low flow cutoff value activate the text field “CutOff” and insert the required value, here 10.

With the Reset” button all entries could be set back to zero.

Inputs / changes to be confirmed with “OK” button. Return to main menu with “Back”.
13.3.7 Configuration of analogue sensors

A brief overview of the possible Type of settings with examples.

Except CS-Digital, see chapter 13.3.2.1 Choice of the sensor types (For example type CS-Digital sensor) and 13.3.3 Dewpoint sensor with type CS-Digital.

The Alarm (See chapter 13.3.2.5 Alarm settings) and Record buttons (See chapter 13.3.2.4 Recording measurement data), the Resolution of the decimal places and Short Name or Value Name (See chapter 13.3.2.3 Name measurement data and define the decimal places) are all described in chapter 13.3.2 Sensor settings.

The caption of description fields, see chapter 13.3.2.2 Label and setting the description fields.

13.3.7.1 Type 0 - 1/10/30 Volt and 0/4 - 20 mA

Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ Type description field ➔ 0 - 1/10/30 V

Please see the scale of the sensor (here for example Type 0 - 10V corresponds to 0 - 250 ° C) from the data sheet of the connected sensor.

By Scale 0V enter the lower and by Scale10V the upper scale value.

The Sensor Supply Voltage is switched On, if it’s required by the sensor type, otherwise off (no green hook).

With Set-Value to-(Offset) it is possible to set the measurement data to specific value.

The positive or negative difference of the Offset is displayed

With the Reset-button the Offset could be set back to zero.
Configuration of analogue sensors

Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ Type description field ➔ 0/4 - 20 mA

Here for example Type 4 - 20 mA.

Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ Unit description field

A preset selection of suitable units by Type 0 - 1/10/30 V and 0/4...20 mA.

13.3.7.2 Type PT100x and KTY81

Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ Type description field ➔ PT 100x

Here the sensor type PT100 and the Unit in °C are chosen, alternatively the sensor types PT1000 and KTY81, as well as the Unit °F can be selected.

More setting options, see chapter 13.3.7.1 Type 0 - 1/10/30 Volt and 0/4 - 20 mA!
13.3.7.3 Type Pulse (Pulse ration)

Main menu ➔ Settings ➔ Sensor settings ➔ B3 ➔ Type description field ➔ Pulse

Typically the value with unit of 1 Pulse is standing on the sensor and can directly entered to the 1 Pulse = description field.

Remark:
Here, all description fields are already labeled or occupied.

Main menu ➔ Settings ➔ Sensor settings ➔ B3 ➔ Unit Pulse

By Unit Pulse you can choose between a flow volume or a power consumption unit.

Main menu ➔ Settings ➔ Sensor settings ➔ B3 ➔ Consumption

Unit of current Consumption by Type Pulse

Remark:
Example with the unit cubic meters.
Configuration of analogue sensors

Main menu ➔ Settings ➔ Sensor settings ➔ B3 ➔ Consumption

The available Units for the Unit of Counter by Type Pulse

The counter can be set any time to any value you need.

More setting options, see chapter 13.3.7.1 Type 0 - 1/10/30 Volt and 0/4 - 20 mA!
13.3.7.4 Type No Sensor

Main menu ➔ Settings ➔ Sensor settings ➔ A1-C4 ➔ Type description field ➔ No Sensor

No Sensor

Is used to declare a not currently needed channel as *No Sensor defined.*

If you go to *Type No Sensor Back*, channel A1 will appear as *unused.*
13.3.8 Typ Modbus

13.3.8.1 Selection and activation of sensor type

First step: choose an unused sensor channel
Main menu ➔ Settings ➔ Sensor settings ➔ B3

Second step: choose type Modbus
Main menu ➔ Settings ➔ Sensor settings ➔ B3 ➔ Type description field ➔ Modbus

Third step: confirm with OK .

Now, a **Name** (See chapter 13.3.2.2 Label and setting the description fields) can be determined.

Main menu ➔ Settings ➔ Sensor settings ➔ B3 ➔ Va ➔ use

Via Modbus it is possible to read out up to 8 Register-Values (from Input or Holding Register) of the sensor.

Selection by the Register Tabs *Va – Vh* and activation by pressing of the corresponding *Use* button.

13.3.8.2 Modbus settings

Main menu ➔ Settings ➔ Sensor settings ➔ B3 ➔ Modbus Settings

Here are the corresponding values for **Modbus ID**, valid values are 1-247, (e.g. here Modbus ID = 1.), the serial communication settings *baud rate, stop bit, parity and timeout* to define.

Is the DS500 connected at the end of the bus the termination and BIAS to be enable by pressing buttons Term and Bias.

Confirmation with OK .

Resetting to basic setting is by pressing button *Set to Default*

With activation of *allow Modus Extended Channels*, 4 additional channels (M1 –M4) are available and thus 32 sensor values could be queried.

Option is only available with 4 or. 8 channel versions.

Settings see chapter **13.3.9 Option Modbus extended channels**
Main menu ➔ Settings ➔ Sensor settings ➔ B3 ➔ Modbus ID description field

Please insert here the specified Modbus ID of the sensor, allowed values are 1-247, (e.g. here Modbus ID = 22)

For setting the Modbus ID on the sensor, please see sensor datasheet.

Main menu ➔ Settings ➔ Sensor settings ➔ B3 ➔ Reg. Address description field

The measurement values are kept in the registers of the sensor and can be addressed via Modbus and read by the DS500. This requires to set the desired register addresses in the DS500.

Entering the register / data address needs to be done in decimal with range 0-65535.

Important:
Required is the correct register-address.
It should be noted that the register-number could be different to the register-address (Offset). For this please consult the sensor data sheet.

Main menu ➔ Settings ➔ Sensor settings ➔ B3 ➔ Reg. format description field

With the buttons Input Register and Holding Register the corresponding Modbus-register type will be selected.

The number format and transmission order of each value needs to be defined by Data Type and Byte Order. Both have to be applied in correct combination.
Supported Data types:

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
<th>Value Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI1(8b)</td>
<td>unsigned integer</td>
<td>0 - 255</td>
</tr>
<tr>
<td>I1 (8b)</td>
<td>signed integer</td>
<td>-128 - 127</td>
</tr>
<tr>
<td>UI2(16b)</td>
<td>unsigned integer</td>
<td>0 - 65535</td>
</tr>
<tr>
<td>I2 (16b)</td>
<td>signed integer</td>
<td>-32768 - 32767</td>
</tr>
<tr>
<td>UI4 (32b)</td>
<td>unsigned integer</td>
<td>0 - 4294967295</td>
</tr>
<tr>
<td>I4 (32b)</td>
<td>signed integer</td>
<td>-2147483648 - 2147483647</td>
</tr>
<tr>
<td>R4 (32b)</td>
<td>floating point number</td>
<td></td>
</tr>
</tbody>
</table>

Byte Order:

The size of each Modbus-register is 2 Byte. For a 32 bit value two Modbusregister will be read out by the DS500. Accordingly for a 16bit Value only one register is read.

In the Modbus Specification, the sequence of the transmitted bytes is not defined clearly. To cover all possible cases, the byte sequence in the DS500 is adjustable and must adapted to the respective sensor. Please consult here for the sensor datasheet.

e.g.: High byte before Low Byte, High Word before Low Word etc.

Therefore the settings have to be made in accordance to the sensor data sheet.

Examples :

Holding Register - UI1(8b) - value: 18

Selection Register Type Holding Register, Data Type U1(8b) und Byte Order A / B

<table>
<thead>
<tr>
<th>Data Order</th>
<th>1. Byte</th>
<th>2. Byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>00</td>
<td>12</td>
</tr>
<tr>
<td>B</td>
<td>12</td>
<td>00</td>
</tr>
</tbody>
</table>

Holding Register – UI4(32) - Value: 29235175522 → AE41 5652

Selection Register Type Holding Register, Data Type U1(32b) und Byte Order A-B-C-D

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A-B-C-D</td>
<td>AE</td>
<td>41</td>
<td>56</td>
<td>52</td>
</tr>
<tr>
<td>D-C-B-A</td>
<td>52</td>
<td>56</td>
<td>41</td>
<td>AE</td>
</tr>
<tr>
<td>B-A-D-C</td>
<td>41</td>
<td>AE</td>
<td>52</td>
<td>56</td>
</tr>
<tr>
<td>C-D-A-B</td>
<td>56</td>
<td>52</td>
<td>AE</td>
<td>41</td>
</tr>
</tbody>
</table>
Main menu ➔ Settings ➔ Sensor settings ➔ B3 ➔ Unit- description field

By pressing the description field Unit the list with the available units appear.

Please select the unit by pressing the respective button e.g. m³/h.
For validation of the unit, please push the button OK.
To move through the list please press the button Page.
In case the unit is not available, it is possible to create a user-defined unit.
Therefore, please select one of the User_X buttons.

Main menu ➔ Settings ➔ Sensor settings ➔ B3 ➔ Scale- description field

The use of this factor allows adapting the output value by the same.

By default or value = 0 no scaling is applied and displayed in the field is don’t scale.

Main menu ➔ Settings ➔ Sensor settings ➔ B3 ➔ OK

By pressing the OK button, the inputs are confirmed and stored.
13.3.9 Option Modbus extended channels

This option is only available for DS 500 in Version 4- or 8 channels.

13.3.9.1 Activation of the extended Modbus channels

Main menu ➔ Settings ➔ Sensor settings ➔ B3 ➔ Modbus Settings ➔ allow Modbus Extended Channels

After activation of „allow Extended Modbus Channels“ there are 4 additional Modbus channels each with 8 values available.

13.3.9.2 Settings of the extended Modbus channels

1st step: select a free Modbus channel

Main menu ➔ Settings ➔ Sensor settings ➔ M1

2nd step: select type Modbus

Main menu ➔ Settings ➔ Sensor settings ➔ M1 ➔ Typ-Textfield ➔ Modbus

3rd step: confirm it with OK

Now a Name (see chapter 13.3.2.2 Label and Setting the description field) can be determined.

Main menu ➔ Settings ➔ Sensor settings ➔ M1 ➔ Va ➔ use

Via Modbus, it is possible to read out up to 8 Register-Values (from Input or Holding Register) of the sensor.

Selection by the Register Tabs Va – Vh and activation by pressing of the corresponding Use button.
13.3.9.3 Modbus Settings

The Modbus ID is at initial activation taken over as a copy of the Modbus settings of the base channel (marking: value in <>), but it can be overridden.

Main menu ➔ Settings ➔ Sensor settings ➔ M1 ➔ Modbus settings

The Modbus ID can be taken from a base channel (inherited). This inheritance allows a change in the base channel simultaneous acquisition of change also for the extended channel.

Adoption is not mandatory can be overwritten.

Confirmation by pressing button OK.

Main menu ➔ Settings ➔ Sensor settings ➔ M1 ➔ Modbus ID

Nevertheless for each register to be read out an individually Modbus ID could be defined.

Confirmation by pressing button OK.

The other settings are carried out analogously Chapter 13.3.8.2 Modbus Settings
13.3.10 Sensor Settings storing/importing (Custom Sensor)

Once defined sensor settings can be saved for reuse. Storage of the settings can be made on the internal SD-Cards or an external USB Stick. This also allows a multiple use on other DS500 devices.

13.3.10.1 Sensor Settings Storing

Main menu ➔ Settings ➔ Sensor settings ➔ B3 ➔ store

Using the buttons SD card or USB, the storage location will be determined.

Should the settings be saved in a new file, then press the button new file

In case an existing file should be overwritten then selecting the file

In case of a new file, by pressing the new file button, the chosen name must be entered and confirmed with OK.

The length of the file name is limited to 8 characters.

The settings are saved as an XML File in the Folder

\DEV0001\SENSORS\PRES16b.xml

In addition, a comment can be defined which will be displayed in case of a later import.
13.3.10.2 Sensor Settings import

Main menu ➜ Settings ➜ Sensor settings ➜ A1-C4 ➜ Type description field ➜ Custom Sensor

Please select the needed storage location **SD-Card** or **USB stick**.

Select the needed file and confirm by pressing **OK**.
13.4 Logger settings (data logger)

Main menu ➔ Settings ➔ Logger settings

Remark:

If more than 12 measurement data are recorded at the same time, the smallest possible time interval of the data logger is 2 seconds.

And if more than 25 measurement data are recorded at the same time, the smallest possible time interval of the data logger is 5 seconds.

<table>
<thead>
<tr>
<th>Time interval (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>120</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

In the top row, you can select the predefined **Time intervals** 1, 2, 5, 10, 15, 30, 60 and 120 seconds for recording.

A different, individual **Time interval** can be entered in the highlighted white description field right at the head, where the currently set **Time interval** is always displayed.

Remark:

The largest possible **Time interval** is 300 seconds.
Main menu ➔ Settings ➔ Logger settings ➔ force new Record File button
or
Main menu ➔ Settings ➔ Logger settings ➔ force new Record File button ➔ Comment description field

A new recording file will be created by pushing the **force new record file** button and a name or comment can be entered by the choice of the **Comment** description field.

Important:

If a new recording file should be created, the **force new record file** button must be activated. Otherwise, the last applied recording file is used.

By pushing the **timed Start** button and then the date/time description field below, the date and the start time can be set for a data logger recording.

Remark:

If the start time is activated, it will automatically be set at the current time plus a minute.
Main menu ➔ Settings ➔ Logger settings ➔ timed Stop button

By pushing the *timed Stop* button and then the date/time description field below, the date and the stop time can be set for a data logger recording.

Remark:
If the stop time activated, it will automatically be set to the current time plus an hour.

Main menu ➔ Settings ➔ Logger settings ➔ timed Start button/timed Stop button ➔ Date/Time description field

After pushing the *date/time description field* a window will appear where the yellow marked area of the time or date can always be set and changed.
Main menu ➔ Settings ➔ Logger settings ➔ timed Start button/timed Stop button ➔ Date/Time description field ➔ Cal button

With the Cal button, the desired date can be easily select from the calendar.

Main menu ➔ Settings ➔ Logger settings ➔ Start button

After the start and stop time activation and the created settings, the Start button will be pushed and the data logger is started.

The data logger starts the recording at the set time!

Main menu ➔ Settings ➔ Logger settings ➔ Start button/Stop button

The data logger can be started without activated time settings, use the Start and Stop buttons for activate and disable. Left below there will be shown how many values are recorded and how long there still can be recorded.

Remark:
The settings cannot be changed, if the data logger runs.

Important:
If a new recording file should be created, the force new record file button must be activated. Otherwise, the last applied recording file is used.
13.5 Device settings

Main menu ➔ Settings ➔ Device settings

Overview of Device settings

13.5.1 Set language

Main menu ➔ Settings ➔ Device settings ➔ Set language

Here you can select one of 12 languages for the DS 500.

Remark: Currently only German and English!

13.5.2 Date & Time

Main menu ➔ Settings ➔ Device settings ➔ Date & Time

By pushing the Time Zone description field and enter the correct UTC, you can set the correct time all over the world.
13.5.3 Network settings

Main menu ➔ Settings ➔ Device settings ➔ Network settings

Here you can set up and make a connection, with or without DHCP, to a computer.

Remark:
With activated DHCP (green hook), the automatic integration of the DS 500 in an existing network is possible, without a manual configuration.

After pushing, for example the IP address description field, the command window appears, where in the selected yellow area a partial IP address can be entered manually.

The Host name can be entered or changed by pushing the description field.

Subnet Mask and Gateway address are entered in the same way!
Label Host name, see chapter 13.2.2.7 Label and setting the description fields!
13.5.4 ModBus settings (Slave)

For using the DS 500 as RS485 Slave, first it is requested to enable it by activation of Enable Modbus RTU(RS485).

Else in this menu the transmission parameter Modbus ID, Baudrate, Stopbits and Parity must be set.

By pressing Set to Default the default values are set to following default values:
- Baudrate: 19200
- Stopbit: 1
- Parity: even

The transmission order could be changed by Data Format. Here Byte order ABCD (Little Endian) or CDBA (Middle Endian) could be set.

All inputs and changes to confirm with OK.

13.5.5 Relay Settings

By activated Relais button, it is allowed / possible to turn off the corresponding alarm relays in the popup appearing in alarm case.

Setting is only possible in the password protected Device Settings menu.

Default values at delivery are not allowed.

In an alarm case e.g. here alarm 1(Yellow) for channel A1 a popup will be displayed.

If in the Relay Settings, the turning off of Relay 1 was allowed by pressing Relay 1 button switches this off.

By confirming with OK the popup will be closed.
13.5.6 SD-Card

Main menu ➜ Settings ➜ Device settings ➜ SD-Card ➜ Reset Logger Database

Main menu ➜ Settings ➜ Device settings ➜ SD-Card ➜ Erase SdCard

Main menu ➜ Settings ➜ Device settings ➜ SD-Card ➜ Test SdCard

By pressing *Reset Logger Database* all actual stored data on SD-Card will be blocked for use in DS500. Nevertheless all data are still stored and available for external use only.

By pressing *Erase SdCard* all Data on the SD-Card will be deleted.

Selection/activation of "*Test Sd Card*" starts write/read cycles. The test results will be displayed as results, errors and last errors.
13.5.7 Update System

Important:
Before updating the DS 500 the system settings should be secured either on a USB or the internal SD-Card!

13.5.7.1 Saving System settings

Home ➔ Import / Export ➔ Export System Settings

With Export system settings, all existing sensor settings can be exported to a USB stick or to the internal SD card. It stores all sensor settings including recording-, alarm-, graphics-, value- and name definitions.

Storing location could be selected using the buttons SD card or USB.

Either a new file could be created by pressing “new file” or an existing file overwritten by selecting a name from the list.

The data are stored after confirmation with OK.

Remark:
The highlighted yellow fields shows, which kind of update is available!
13.5.7.2 Update FW (Main and channel)

Home ➔ Settings ➔ Device settings ➔ System-Update

If it is required to install an older software version, you have press the button "Force all".

Home ➔ Settings ➔ Device settings ➔ System-Update ➔ Update-Firmware

The update of DS 500 for all new SW parts starts.

Important:

If the Reboot system button appears after the update, it must be pushed to restart the DS 500!
The update of DS 500 channels starts.

Important:
If the *Reboot system* button appears after the update, it must be pushed to restart the DS 500!

13.5.8 Factory Reset

Reboot the System here, if you need it!
13.6 Report settings (optional)

Main menu ➔ Settings ➔ Report settings

You can *Stop* and *Start* the report with the buttons.

Remark:

After pushing the *Stop* button, the report will restart in one hour, if the *Start* button is not pushed, before!

All stored *report data* can be erased by pushing *Yes.*

By pushing of the *Currency Unit* description field, a currency may be entered, which is applied to the consumption report and the cost settings.

Remark:

If no currency entered, the accordant fields remain empty.

See also chapter 13.17 Export / Import

See also chapter 13.15.1 Consumption report (optional) and 13.15.2 Cost Settings (optional).
13.7 Virtual Channels (optional)

The option „Virtual Channels“ offers 4 additional channels (no HW Channels) where it is possible to display calculations of each single HW-Channel, virtual channels and free defined constants as well. For each „Virtual Channel“ are 8 calculations each with of 3 operands and 2 operations possible.

Possible cases are calculation of:
- Specific performance of a compressor(s)
- Complete consumption of a compressor (or the sum of several compressors)
- Energycost etc.

An example for a specific performance calculation see chapter 13.7.6

13.7.1 Option „Virtual Channels“ activation

After purchasing of the option „Virtual Channels“ the functionality have to be activated first.

Main menu ➔ Settings ➔ about DS 500

Please push the button Buy for „Virtual Channels“ and you will requested to insert the key-code received.

Please enter the Key-Code in the text-field and activate the option by pushing the button OK.
13.7.2 Virtual Channels Settings
Main menu ➔ Settings ➔ Sensor Settings ➔ Virtual Channels

After pushing the button „Virtual Channels“ in the Sensor Settings menu an overview with the 4 available „Virtual Channels“ is displayed.

Remark:
By default, all channels are without settings.

13.7.3 Selection of Sensor-type
Main menu ➔ Settings ➔ Sensor Settings ➔ Virtual Channels ➔ V1

By pushing the description field Type No Sensor the list of sensor types appears (see next step).

Main menu ➔ Settings ➔ Sensor Settings ➔ Virtual Channels ➔ V1 ➔ Type text field

If still no sensor has been configured, the Type No Sensor appears.

By pushing the button Generic the virtual channel is selected. Pushing the button No Sensor will reset the virtual channel.

Confirmation of selection is done by pressing the button OK.
By pushing the Text field **Name** a Sensor name could be inserted.

The button **Store** is implemented for storing of sensor settings (custom sensor) see chapter 12.3.2.11.
13.7.4 Configuration of each single virtual value

Each virtual channel includes 8 individual calculated values where every value has to be activated separately.

13.7.4.1 Activation of a single virtual value

Main menu ➔ Settings ➔ Sensor Settings ➔ Virtual Channels ➔ V1 ➔ V1a ➔ Use

Every virtual value has to activated by selecting the respective Value-Button e.g. V1a and pushing of the Use Button.

13.7.4.2 Definition of Operands

Main menu ➔ Settings ➔ Sensor Settings ➔ Virtual Channels ➔ V1 ➔ 1stOperand

By accessing the text field 1st Operand
The list with all channels (HW and virtual channels) and const. Value appears.

Main menu ➔ Settings ➔ Sensor Settings ➔ Virtual Channels ➔ V1 ➔ 1stOperand ➔ A1

By pressing a button either for HW-, virtual channel or const. Value e.g. A1 a list of all available measurement channels or measurement values will appear.
This approach is analogous to the other operands. (1st Operand, 2nd Operand and 3rd Operand).

13.7.4.3 Definition of Operations

Main menu ➔ Settings ➔ Sensor Settings ➔ Virtual Channels ➔ V1 ➔ 1st Operation

By accessing the text field **1st Operation**
the list with all available operands appears.

Selecting and validation of the operand by pressing the respective operand.

Pressing of the button **not used** deactivates the operation of the dedicated operand.

This approach is analogous for both operations (1st Operation and 2nd Operation).
13.7.4.4 Definition of Unit

Main menu ➔ Settings ➔ Sensor Settings ➔ Virtual Channels ➔ V1 ➔ Unit of Result

By accessing the text field *Unit of Result* the list with all available units appears.

Please select the unit by pressing the respective button e.g. *m³/h*.

For validation of the unit, please push the button *OK*.

To move through the list please press the button *Page*.

In case the unit is not available, it is possible to create a user-defined unit.

Therefore, please select one of the *User_X* buttons.

By pressing the button *Edit* you enter the menu for inserting the new Unit.

Then define the unit and confirm it with the button *OK*.

With the buttons ← and *Clr* it is possible to correct the input.

Button ← deletes the last figure

Button *Clr* clears the whole field

Important

Each calculation allows you the use of maximum 3 operands and 2 operations.

The calculation is based on following formula:

Example:

\[V_{1a} = (1\text{st\ Operand\ } 1\text{st\ operation\ } 2\text{nd\ Operand}) \ 2\text{nd\ operation\ } 3\text{rd\ Operand} \]

\[V_{1a} = (A_{1c} - A_{2a}) \times 4.6 \]
13.7.4.5 Value name, resolution of decimal places and recording of values

Main menu ➔ Settings ➔ Sensor Settings ➔ Virtual Channels ➔ V1 ➔ Tool-Button

The Resolution of the decimal places, the Short Name and Value Name are found under the Tool button.

For the recorded Value there can be entered a Name with 10 characters and later in menu item Graphics/Real time values it is easier to identify it. The Resolution of the decimal places is simply adjustable by pushing right and left (0 to 5 decimal places).

Main menu ➔ Settings ➔ Sensor Settings ➔ Virtual Channels ➔ V1 ➔ Record Button

Use the Record buttons to select the measurement data that will be stored by activated data logger.

Attention:

Before the selected measurement data are recorded, the data logger must be activated after the settings (See chapter 13.4 Logger settings (data logger)). See also chapter 13.3.2.3 Name the measurement and 13.3.2.4 Recording measurement data.
13.7.4.6 Calculation Example „Specific Performance“

As an example we assume a compressor system with 5 single compressors. The consumption measurements are done with consumption sensors VA400 at the inputs A1 - A4 & B1 and an electric meter at input B2.

Calculated are the complete consumption of air and energy as well as the "specific performance" of the entire system.

Main menu ➔ Settings ➔ Sensor Settings ➔ Virtual Channels ➔ V1 ➔ V1a ➔ Use

Selection and Input of the operands and operations see chapter 13.7.4.2 and chapter 13.7.4.3.

Result in V1a is the sum of consumption sensor A1 + A2 + A3 see range "result". For this example it is 28856,8 m³

Selection and Input of the operands and operations see chapter 13.7.4.2 and chapter 13.7.4.3.

Result in V1b is the sum of consumption sensor A4 + B1 see range "result". For this example it is 37233,4 m³
Selection and Input of the operands and operations see chapter 13.7.4.2 and chapter 13.7.4.3.

Result in \(V_{1c} \) is the complete consumption with \(V_{1a} + V_{1b} \) see range “result”. For this example it is \(66090,2 \text{ m}^3 \)

Alternatively, the complete consumption could be calculated already in \(V_{1b} \), this using the 3. operand in \(V_{1b} \) with \(V_{1b} = A_4 + B_1 + V_{1a} \) -> not shown

For a complementation, we added in \(V_{1d} \) the total sum of consumed energy. Read out of electric meter at input B2.

\(V_{1c} \rightarrow \) complete Air consumption
\(V_{1d} \rightarrow \) energy consumption

Calculation of the specific Perfor. is done in \(V_{1e} \) with \(V_{1e} = \frac{B_2}{V_{1c}} \)
For this example, it is \(0,072 \text{ KWh/m}\text{³} \)

Cost calculation in \(V_{1f} \) with \(V_{1f} = B_2 \times 0.21 \)
For this example it is \(991,36 \text{ €} \)

Due to more as 4 values used in virtual channel V1 the result range is splitted into 2 pages. To move between the pages please press the page button.
13.8 Analog Total (optional)

The Option „Analog Total“ offers the possibility of a consumption measurement also for sensors with analogues outputs e.g.: 0-1/10/30V and 0/4 – 20mA.

13.8.1 Option „Analog Total“ activation

After purchasing of the option „Analog Total“ the functionality have to be activated first.

Main menu ➔ Settings ➔ about DS 500

Please push the button Buy for „Analog Total“ and you will requested to insert the key-code received

Please enter the Key-Code in the text-field and activate the option by pushing the button OK.
13.8.2 Selection of sensor type

See also chapter 13.3.7 Configuration of analogue Sensors

Main menu ➔ Settings ➔ Sensor Settings ➔ A1

By pushing the description field *Type No Sensor* the list of sensor types appears (see next step).

Main menu ➔ Settings ➔ Sensor Settings ➔ A1 ➔ Type Textfield

If still no sensor has been configured, the *Type No Sensor* appears.

By pushing the button of the required sensor button e.g. 4-20mA the sensor is selected. Pushing the button *No Sensor* will reset the selection.

Confirmation of selection is done by pressing the button *OK*.

Selection of the units by pushing the text fields for the corresponding measurement and consumption units. In addition, you can push the *scale buttons* for the min. and max. Scaling values and set the measuring range.

Here we have *0 m³/h* for 4 mA and *170 m³/h* for 20 mA

Confirmation of the inputs by pushing button *OK*.

Remark:
The text field „Unit-Consumption“ is only editable in case of measurement values(Units) with volume per time unit and thus also the consumption calculation.

For labeling and setting of the description fields see also chapter 13.2.2 Label and set the description fields.
13.9 Chart

Main menu ➔ Chart

Attention:
In the Chart there can be represented only records that have already finished!

Current records can be seen in Chart/Real time values.

(See chapter 13.10 Chart/Real time values)

Zoom and scroll options in the time domain of the Chart:

Maximal an entire day can be represented (24h).

The smallest possible range is represented, depending on the time interval of the recording.

Additional zooming and scrolling options in Chart and Chart/Real time values:
Main menu ➔ Chart ➔ Date description field

By pushing the date description field (center bottom) the calendar, from which the appropriate date can be selected conveniently, appears.

Stored measuring data can be select here by time (START and STOP), Comment and File name (contains English date).

Main menu ➔ Chart ➔ Setup

In the Setup, you can make up to four different y-axis labels and in addition choose a Unit, the grid (min, max, step) and several channels (Plots) and a Colour.

The y-axis left 1. is already enabled, you can choose a Colour for it.

Remark:
Grid setting is already possible at this point, but later when a record is selected it is more reasonable!
Main menu ➔ Chart ➔ Setup ➔ Unit description field

2. Select the Unit of the represented recording from the menu.

Main menu ➔ Chart ➔ Setup ➔ Plots description field

3. Now, you can choose the desired recording and colour intensity (in Colour).

Main menu ➔ Chart ➔ Setup

4. Now, the grid can be set with min, max, and step.
Main menu ➔ Chart ➔ Setup ➔ Plots description field

5. Several recordings with the same unit can be represented in one y-axis, with the help of various colour intensities.

In the same way the remaining y-axes can be labelled!

6. The *Plots* description field shows on what channel the measured data were recorded and there can be seen how much recordings on one y-axis are represented.

Four different grid settings with various *Units* and *Colours.*
Main menu ➔ Chart
13.10 Chart/Real time values

Main menu → Chart/Real time values

One or more channels for the recording and presentation of measured data can be selected here, such as a dew point sensor or several different sensors.

After pushing this button currently recorded measurement data in the current time range are represented.

Quick access to predefined time periods 24 h, 8 h, 1 h, 15 min and 2 min. At the push of a button the chart for the selected time range is displayed.

Main menu → Chart/Real time values → Setup #1 - #12

In this menu item, up to twelve channels (depending on the version of the DS 500) can be activated at the same time and viewed in Main → Chart/Real time values.

Here the channel C1 chosen.

For each channel, you can select a value to be represented in the Chart and one to display (2. values).

In addition, it can be set, like in Main → Chart, a colour and the grid (min, max, step) of the y-axis.
Main menu ➔ Chart/Real time values

Channel A1:
Elected the flow as Chart and consumption as 2. values (number with the smaller font size) and the colour orange.

If several channels are logged, all charts will be represented. But there is only the y-axis of the selected channel represented (here: Setup #2).

If there is no grid entered in the setup, min will be 0, max 100 and step 10 (Setup #3).

In the same way the remaining setups can be set!

Main menu ➔ Chart/Real time values ➔ Button #1 - #12

By activation of button # 1 - #12, it is possible to change the setup of the corresponding graphic, see description above, or by a further press to switch off or back the graphic.
13.11 Channels

Main menu ➔ Channels

The overview of **Real time values** shows the current measured values of all connected sensors.

Exceeds or falls below the set alarm limits, the respective measured value flashes yellow (alarm 1) or red (alarm 2).

Each channel can be selected and the settings viewed and checked, but no changes can be made here.

Remark:
Please, make changes in the **Settings**!
13.12 Real time values

Main menu → real time values

The view Real time values allows displaying of 1 to 10 free definable measurement values.

By exceeding the upper- or lower alarm levels the respective measurement value flashes yellow for Alarm-1 or red for Alarm-2.

Remark:
Changes for display settings have to be done in the Setup menu!

Main menu → real time values → Setup next Layout

Here, by pressing next Layout – button it is possible to select the wanted layout.

You can choose between 7 different layouts showing 1-10 measurements. See below.

The values to be displayed could be selected in the Val.1 to Val.10 description fields.

Different variants:
13.13 Alarm overview

Main menu ➔ Alarm overview

In the Alarm overview, you can immediately see whether there is an alarm 1 or alarm 2. You can see also in other menu items: Main ➔ Real time values and Main ➔ Settings ➔ Sensor settings. The channel name will appear yellow invers (alarm 1) or inverse red (alarm 2). In addition, you can see which relay had been set for the channel as the alarm 1 or alarm 2. This is indicated by the yellow and red or red/yellow squares on the intersections between measuring channel and relay.

HERE: Alarm 1 for channel A3 and alarm 2 for channel A4

Main menu ➔ Alarm Overview ➔ A1

Like in Main ➔ Real time values, individual channels can be selected here, to detect which and how much the value has exceeded or below the alarm range.

Remark:
The alarm parameters can be set and/or modified here.
13.14 Further setting options

13.14.1 Set backlight

Main menu ➔ Settings ➔ Set backlight

Remark:
At the first touch, the Backlight in our example is reset to 50%, after that a "normal" function operation is possible.

Important:
If the Backlight dimming after button is not activated, then the Backlight stays permanently on, in the currently set brightness.
13.14.2 Calibrate touch-screen

Main menu ➔ Settings ➔ Touchscreen calibration

If necessary, the touch-screen calibration can be changed here. Push Calibrate and it appears, 1. left above, 2. bottom right and 3. in the middle, a calibration cross that must be pushed consecutively. If the calibration is finished and the touch-screen display averaged, you can confirm with OK. Is this not the case, so you can repeat the calibration with the help of the Cancel and Calibrate buttons.

13.14.3 Cleaning

Main menu ➔ Settings ➔ Cleaning

This function can be used for cleaning the touch panel during running measurements. If one minute is not enough time to clean, the process can be repeated at any time. Is the cleaning faster finished, then you can push the to abort press long button (for one or two seconds) to cancel it.

13.14.4 System Status

Main menu ➔ Settings ➔ System Status

The function System Status offers an overview, fitting voltages and currents on the individual and the entire channels, as well as the power supply of the power supply units. In addition, it offers the most important network information, such as IP, host name and MAC. By the Runtime, you always know how long the DS 500 was in total in operation.
13.14.5 About DS 500

Main menu ➔ Settings ➔ About DS 500

Brief description of the Hardware and Software Version, as well as the Serial Number of the DS 500.

Under options, you can buy four additional, different functions, if you have not done this by ordering.
13.15 Consumption report with cost settings, export data and webserver

The daily, weekly, monthly and yearly total consumption can be calculated and displayed with the optional function Consumption report.

The currency will be entered in the report settings (chapter 12.15.1 Report settings (optional)) and the consumption costs in chapter 12.15.2 Cost settings (optional).

Via the optional function Webserver you can see the actual values of your DS 500 worldwide.

13.15.1 Consumption report (optional)

Main menu ➔ Consumption report

![Consumption report](image)

After opening the Consumption report the weekly overview is displayed automatically.

Remark: The Costs relate to the set channel (here A1) and the costs of all documented channels are to find in Total.

Main menu ➔ Consumption report ➔ Day/Week

![Consumption report](image)

Another option is the daily and weekly Consumption report.

Main menu ➔ Consumption report ➔ Month/Year

![Consumption report](image)

In addition, there is a monthly and yearly Consumption report.
Touch panel operation by Consumption report:

By the Consumption report, with the help of touch panel, you can easily consider the consumption and the cost of a channel in the desired period or at a certain date.

Remark: The channel selection in Consumption report is marked in green!
13.15.2 Cost settings (optional)

Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ Cost Settings

In the Sensor settings for the Type CS-Digital and Pulse you can enter the costs per unit in the Cost Settings.

Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ Cost Settings ➔ use in Report button

Here you can enter the consumption costs per unit for a specific tariff.

Main menu ➔ Settings ➔ Sensor settings ➔ A1 ➔ Cost Settings ➔ use in Report + dual tariff button

It can be entered here, for example, a day and night tariff with time.

Label of the description fields, see chapter 13.3.2.2 Label and setting the description fields and 14.4 Logger settings.
13.16 Webserver (optional)
With the web server you have access, worldwide, to the DS 400 system information, the measurement data, the possibility to start the logger and also to install an e-mail notification in case of measurement exceedances (alarms).

The individual functions are accessible via different user levels, every level is protected.

The allocation of access rights is done by the system administrator. Overview access permissions see chapter 13.16.1.4 Webserver assignment of rights.

13.16.1 Option „Webserver“ activation
After purchasing of the option „Webserver“ the functionality have to be activated first

Main menu ➔ Settings ➔ about DS 500

Please push the button *Buy* for „Webserver“ and you will requested to insert the key-code received.

Please enter the Key-Code in the text-field and activate the option by pushing the button *OK*.

13.16.2 Setup the Webserver Admin Password
The setup of the Web Admin password is done under
Home ➔ Settings ➔ Device Settings ➔ Network Settings

In the text description field *WebAdmin Password* could the password be set up. The password length is >=6 characters.
13.16.3 Webserver start

With an Internet-Explorer (IE, Firefox, Chrome) and the IP-address of your DS 500, you can access the webserver.

http:// <IP-Adresse des DS500>

Remark:
The IP-address of the DS 500 you can see in the chapters 13.14.4 System Status and 13.5.3 Network settings.

Webserver Start window Info:

No access rights are required, see chapter 13.16.1.4
13.16.3.1 Webserver assignment of rights (Administrator)

13.16.3.1.1 Accessrights Webserver

For individual functions, appropriate privileges are required, see table "access rights"

<table>
<thead>
<tr>
<th>Rights Group</th>
<th>Info</th>
<th>Status</th>
<th>Actuals</th>
<th>Chart</th>
<th>MailonAlarm</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guest</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operator</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Admin</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Table Accessrights

13.16.3.1.2 Webserver Login

After pressing the Button « Login » following screen is visible.

Login as Administrator with Username « admin » and the WebAdmin Password.

Setup of the WebAdmin Passwords see chapter 13.16.1.2.

After starting as Administrator all functions on the left side are activated.
13.16.3.1.3 New users and password definition

Selection of function « Users/Passw. » (only for Administrators accessible)

With this function, you are able to define the users with their corresponding access rights.

Username: min. 4 characters; max. 12 characters

Password: min. 4 characters, max. 12 characters

Group: see access rights chapter 13.16.1.4

The inputs will be stored with « Submit »
13.16.3.2 Webserver E-Mail Configuration (Administrator)

Access of function « EMai l » only for administrators
In case you are not logged in as administrator, please see Chapter 13.16.1.3

Auswahl von Menüpunkt « EMai l » (nur für Administratoren zugänglich)
At the first/ initial configuration there are no entries.

An existing mail account and those access data are needed for final mail configuration.

The settings will be stored by pressing « Submit »

A verification (correctness of your settings) could be done by sending a test mail.
Therefore, please press the button « Test EMail setting »

Are all settings ok, a message, see left, will be displayed and a mail should be received by the defined recipients.
13.16.3.3 Webserver MailOnAlarm (Administrator & Operator)

This feature allows sending an e-mail at limit violations (alarms) to the addresses defined under EMail. Mail deliveries are based on the respective Alamrelays, i.e. when limits are exceeded and the relays are activated an E-mail will be sent too.

The EMail content is fixed only one short comment could be added.

In this form, the recipients for the required alarms could be set/defined.

In addition, a short comment could be added. With the button `Submit` the settings are stored.

Alarm Email Content:

DS 500 ALARM

Event: 15.01.2015 13:49:20
IP: 192.168.172.39
Hostname: DE-0529

- Alarm for Relais_1 Level_1 Comment: Test1
 - Channel (A2) "Ch-A2" Value "Temp."
 - Actual = 30.33°C > 30.000°C (Limit ± Hyst.)

End of message
13.16.3.4 Webserver Chart (Administrator, Operator & User)

With these function it is possible to access and view all measurement data stored on the DS500 SD card. The data are by a continuous recording, on a daily base, else according the used recording period stored.

Select File: In this drop down field a measurement data file could be selected. With buttons previous & next could be switched between the files

Select Value: Here the required measurement value has to be selected

X-Scale: With entering a time in the field «from» and «to», a specific time span could be defined.

Viewing of data by pressing button Update Chart, in addition show average must be enabled.

With show Minimum and show Maximum the min and max values will be displayed too.
With activation of show as curve the min and max values will be displayed as curve.
13.16.3.5 Webserver Screen

Herewith it is possible to get a screen copy of the DS500 for Home menu, Chart/RT, Channels, Realtime values, Alarm and Settings (Systemstatus, about DS 500).

Remark:
Any selection change done through the webserver is transferred to the DS 500 too. With simultaneous access to the DS 500 by webserver and an operator direct at the DS500 the operator has priority. By simultaneous web access priority is according to accessrights.

Anzeige ➔ Chart/RT

Timescale: The required timespan could be selected
Active Plot: Herewith could one of the defined curves selected where for which the Y-scale will be displayed. A double click will switch on / switch off the corresponding curve

Both function are analog DS500. By pressing Home the screen is going back to the main menu.

Anzeige ➔ Channels

Select channels: Selection of single channel
Page: If the sensor has more as 4 values, by pressing this button you can switch to 2.page.

HW/VirtCh.: Switch to Virtual Channel

Settings are analog to DS 400
By pressing Back the screen is going back to the main menu

The views
Realtime values ➔ Screen ➔ Realtime
Alarm ➔ Screen ➔ Alarm
Report ➔ Anzeige ➔ Report
Settings ➔ Screen ➔ Settings

are selected analogue to above.
13.16.3.6 Webserver Actuals

show Sensor: enable / disable the view for individual sensors
show values: enable / disable the view for individual sensors values
Refresh time: Selection of the timespan of the data update (60s, 30s, 10s, 5s, 2s, 1s)
Font size: Size of characters (4 different sizes)

13.16.3.7 Webserver Status

Here you have an overview of Relays and Logger status.

Remark:
In case the logger is stopped, only user with access rights of administrator or operator are able to start the logger. To stop the logger it is only possible at the DS 500 direct.
13.17 Import / Export

13.17.1 Export Logger data

Recorded data can be transferred to a USB stick, by using Export Data.

Main menu ➔ Import / Export

With Export Logger data, Export Screenshots, Export system settings and Export Report the recorded measurement data and saved screenshots and settings can be transferred to a USB stick.

Also with Import system settings saved system settings could be imported.

Main menu ➔ Import / Export ➔ Export Logger data

Use the Change buttons to adjust a period between start and end. Stored measurement data in this period are exported.

Main menu ➔ Import / Export ➔ Export Logger data ➔ Change

The selected date is always green, and the date numbers of the Sundays are red, like in the calendar.

On days, where measurement data were recorded, the date numbers are optical highlighted.
Main menu ➔ Import / Export ➔ Export Logger data ➔ export

The measurement data of the selected period are exported to a USB stick.

13.17.2 Screenshots export

The screenshots stored on the SD card can be exported to a USB stick

Main menu ➔ Import / Export

With Export Screenshots the recorded screenshots data can be transferred to a USB stick.

Main menu ➔ Import / Export ➔ Export Screenshots

Use the Change buttons to adjust a period between start and end. Stored bitmaps data in this period are exported.
Main menu ➔ Import / Export ➔ Export Screenshots ➔ Change

The selected date is always green, and the date numbers of the Sundays are red, like in the calendar.

On days, where measurement data were recorded, the date numbers are optical highlighted.

Main menu ➔ Import / Export ➔ Export Screenshots ➔ Export

The screenshots of the selected period are exported to a USB stick.

13.17.3 Export System Settings

By using Export system settings, all existing sensor settings can be exported to a USB stick.

13.17.4 Export Report

By using Export Report, all existing reports can be exported in CSV-format to a USB stick.
13.17.5 Import system settings

Using this function, stored system settings can be read back again. All sensor settings including recording-, alarm-, measurement resolution-, graphics-, current values- and naming-definitions are taken over.

Main menu ➔ Import / Export ➔ Import system settings

Please select the needed storage location **SD-Card or USB stick.**

Select the needed file and confirm by pressing **OK.**

After confirmation with **OK** it is asked again if settings should be overwritten, by confirming this once more the new System Settings are loaded and a reboot is required.

To definitively take over the new settings it is **mandatory** under

Main menu ➔ Device settings ➔ Sensor settings

to confirm each used channel A1-C4 again.
14 Screenshot function

This function allows you to store a copy of the screen of the menus Chart, Chart / Real time Values, Channels and Real time Values to a USB-Stick or SD-Card. Mainly foreseen to save not logged data.

14.1 Screenshot saving

Main menu ➔ Chart ➔
Main menu ➔ Chart / real time Values ➔
Main menu ➔ Channels ➔
Main menu ➔ Real time Values ➔
Main menu ➔ Settings ➔ Sensor Settings ➔

Here, the location of USB stick or SD card can be selected.

Screenshots are stored in directories, defined per day and here numbered consecutively.

Directory naming:

```
DYYMMTT
D=fix(for Date)
YY = Year
MM= Month
TT= Day
```

Path: DEV0001/Hostname/Bitmap

For Hostname see

Main menu ➔ Settings ➔ System Status

Example: first Screenshot 26. February 2014

```
\DEV0001/DE-5001/Bitmap/D140226/B00000.bmp
```
Note:
The DS 500 has a cleaning-function which protects the display against unintentional operation in the event of cleaning measures. Please refer to Chapter 12.14.3 for further information.

Cleaning of the DS 500 must be undertaken using a slightly damp (not wet) cotton cloth or one-way wipe, and mild, commercially available cleaner/soap. For decontamination, spray the cleaner on an unused cotton cloth or one-way wipe, and wipe the component comprehensively. Perform the final drying with a clean cloth or by air drying. In addition, the local hygiene provisions need to be observed.

Warning!
Damage possible!
A too high degree of humidity and hard and pointed objects, as well as aggressive cleaners, cause damage to the data logger and to the integrated electronic components.

Measures
• Never clean with a soaked cloth.
• Do not use aggressive cleaners.
• Do not use pointed or hard objects for cleaning.
KONFORMITÄTSERKLÄRUNG
DECLARATION OF CONFORMITY

Wir, CS Instruments GmbH,
Am Ozer 28c, 24955 Harrislee

Erklären in alleiniger Verantwortung, dass das Produkt
Multi-Messgerät DS 500
Multi-function measuring instrument DS 500

den Anforderungen folgender Richtlinien entsprechen:
We hereby declare that above mentioned components comply with requirements of the following EU directives:

<table>
<thead>
<tr>
<th>Elektromagnetische Verträglichkeit</th>
<th>2014/30/EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromagnetic compatibility</td>
<td>2014/30/EC</td>
</tr>
<tr>
<td>Niederspannungsrichtlinie</td>
<td>2014/35/EU</td>
</tr>
<tr>
<td>Low Voltage Directive</td>
<td>2004/35/EC</td>
</tr>
</tbody>
</table>

Angewandte harmonisierte Normen:
Harmonized standards applied:

EMV-Anforderungen	EN 61326-1: 2006-10 2013-07
EMC requirements	EN 61000-3-2: 2015-3
Sicherheitsanforderungen	EN 61010-1:2010
Safety requirements	

Anbringungsjahr der CE Kennzeichnung: 11
Year of first marking with CE Label: 11

Das Produkt ist mit dem abgebildeten Zeichen gekennzeichnet. The product is labeled with the indicated mark.

[Signature]